PGPLOT

GRAPHICS SUBROUTINE LIBRARY

T. J. Pearson

June 1989

California Institute of Technology
Pasadena, California 91125
(818) 395-4980

Copyright © 1988, 1989 by California Institute of Technology

PGPLOT, Version 4.9, June 1989
(Subroutine descriptions updated to Version 4.9D)

Please address comments on PGPLOT and this manual, including requests for
copies, bug reports, and requests for improvements, to the author:

Tim Pearson,

Astronomy Department,

Caltech 105-24,

Pasadena 91125,

USA.

Telephone: +1 818 395-4980
INTERNET: tjp@astro.caltech.edu

1

Contents

INTRODUCTION
PGPLOT
This Manual
Using PGPLOT
Graphics Devices

Environment variables

SIMPLE USE OF PGPLOT .
Introduction
An Example
Data Initialization R
Starting PGPLOT
Defining Plot Scales and Drawing Axes
Labeling the Axes
Drawing Graph Markers
Drawing Lines
Ending the Plot

Compiling and running the program

WINDOWS AND VIEWPORTS
Introduction
Selecting a View Surface
Defining the Viewport
Defining the Window
Annotating the Viewport
Routine PGENV

PRIMITIVES .
Introduction
Clipping
Lines .
Graph Markers .
Text
Area Fill

5 ATTRIBUTES

il

1-1
1-1
1-1
1-2
1-3
1-4

2-1
2-1
2-1
2-2
2-3
2-4
2-4
2-5
2-5
2-5
2-6

3-1
3-1
3-2
3-3
3-4
3-4
3-5

4-1
4-1
4-1

4-2
4-4
4-6

5-1

Introduction bl
ColorIndex 51
Color Representation b2
Line Style b3
Line Width 53
Character Height 54
Character Font 54
Fill-Area Style b4

6 HIGHER-LEVEL ROUTINES 61
Introductiono o0 ... 61
XY-plots Lo 6]
Histograms 63

Functions of two variables 6-3

7 INTERACTIVE GRAPHICS 171
Introduction L0 T
The Cursoro
Using the Cursor 11
Buffering o oo T2

8 METAFILES 81
Introduction o000 000 81
Creating Metafiles 81
Translating Metafiles 82

A SUBROUTINE DESCRIPTIONS A1l
Introductiono oo oo ... Al
Arguments L. .00 Al
Clagsified List Al
Subroutine Synopses A4
PGADVANCE - non-standard alias for PGPAGE A
PGASK - control new page prompting Ab
PGBBUF - begin batch of output (buffer) A5
PGBEG - begin PGPLOT, open output device A6
PGBEGIN - non-standard alias for PGBEG A6
PGBIN - histogram of binned data AT
PGBOX - draw labeled frame around viewport A8
PGCONB - contour map of a 2D data array, with blanking A-9
PGCONS - contour map of a 2D data array (fast algorithm) A-10

v

PGCONT - contour map of a 2D data array (contour-following)
PGCONX - contour map of a 2D data array (non-rectangular)
PGCURS - read cursor position

PGCURSE - non-standard alias for PGCURS

PGDRAW - draw a line from the current pen position to a point

PGEBUF - end batch of output (buffer) .

PGEND - terminate PGPLOT .

PGENYV — set window and viewport and draw labeled frame
PGERRB - horizontal error bar

PGERRX — horizontal error bar

PGERRY - vertical error bar . .

PGETXT - erase text from graphics dlsplay .
PGFUNT - function defined by X = F(T), Y = G(T) .
PGFUNX - function defined by Y = F(X)

PGFUNY - function defined by X = F(Y)

PGGRAY - gray-scale map of a 2D data array

PGHI2D — cross-sections through a 2D data array .
PGHIST — histogram of unbinned data .
PGIDEN — write username, date, and time at bottom of plot .
PGLAB — write labels for x-axis, y-axis, and top of plot
PGLABEL — non-standard alias for PGLAB

PGLCUR — draw a line using the cursor .

PGLDEYV - list available device types .o
PGLEN — Find length of a string in a variety of units
PGLINE - draw a polyline (curve defined by line-segments)
PGMOVE - move pen (change current pen position)
PGMTEXT - non-standard alias for PGMTXT .
PGMTXT — write text at position relative to viewport
PGNCUR — mark a set of points using the cursor .
PGNCURSE - non-standard alias for PGNCUR

PGNUMB - convert a number into a plottable character string .

PGOLIN — mark a set of points using the cursor

PGPAGE — advance to new page .

PGPAP — change the size of the view surface (”paper size”)
PGPAPER - non-standard alias for PGPAP

PGPIXL - draw pixels Lo

PGPNTS — draw one or more graph markers .

PGPOINT — non-standard alias for PGPT .

PGPOLY - fill a polygonal area with shading

A-11
. A-12
. A-13
. A-13
. A-13
. A-14
. A-14
. A-15
. A-16
. A-16
. A-1T7
. A-1T
. A-18
. A-18
. A-19
. A-20
. A-21
. A-22
. A-22
. A-22
. A-23
. A-23
. A-23
. A-24
. A-24
. A-24
. A-25
. A-25
. A-26
. A-26
. A-27
. A-28
. A-28
. A-29
. A-29
. A-30
. A-31
. A-31
. A-32

PGPT — draw one or more graph markers

PGPTEXT - non-standard alias for PGPTXT

PGPTXT - write text at arbitrary position and angle .
PGQCF - inquire character font

PGQCH - inquire character height

PGQCI - inquire color index .

PGQCOL - inquire color capability .

PGQCR - inquire color representation .

PGQFS — inquire fill-area style e
PGQINF - inquire PGPLOT general information .
PGQLS - inquire line style .

PGQLW - inquire line width .

PGQPOS - inquire current pen position .

PGQVP - inquire viewport size and position .

PGQWIN - inquire window boundary coordinates
PGRECT - draw a rectangle, using fill-area attributes .
PGRND - find the smallest "round” number greater than x
PGRNGE - choose axis limits

PGSCF — set character font

PGSCH - set character height

PGSCI — set color index .

PGSCR - set color representation .

PGSFS - set fill-area style . e
PGSHLS — set color representation using HLS system
PGSLS — set line style .

PGSLW — set line width .

PGSVP - set viewport (normalized device coordinates)
PGSWIN - set window . . .
PGTBOX — Draw a box and optlonally write HH MM SS labels
PGTEXT - write text (horizontal, left-justified)

PGUPDT - update display .

PGVPORT - non-standard alias for PGSVP

PGVSIZ — set viewport (inches)

PGVSIZE - non-standard alias for PGVSIZ

PGVSTAND - non-standard alias for PGVSTD

PGVSTD - set standard (default) viewport

PGWINDOW - non-standard alias for PGSWIN
PGWNAD - set window and adjust viewport to same aspect ratio

vi

. A-33
. A-33
. A-34
. A-34
. A-34
. A-35
. A-35
. A-35
. A-35
. A-36
. A-36
. A-37
. A-37
. A-37
. A-38
. A-38
. A-38
. A-39
. A-39
. A-39
. A-40
. A-40
A4
A4
. A-41
. A-42
. A-42
. A-43
. A-43
. A-44
. A-44
. A-44
. A-45
. A-45
. A-45
. A-45
. A-46
. A-46

B PGPLOT SYMBOLS B1

Cl INSTALLATION INSTRUCTIONS (VMS)Cl1
Introduction0001
Restoring the Save SetCll1
Logical NamesCl3
The Shareable ImageCl4
Recompiling PGPLOTCl4
Recompiling the Example ProgramsCl5
Rebuilding the Documentation FilesCl5
Printing the ManualCl5
Adding a new PGPLOT routineCl6

C2 INSTALLATION INSTRUCTIONS (UNIX).C21
Introduction L0021
Basic InstallationC21
Advanced InstallationC24
Device HandlersC26
Special Notes: SunC28
Acknowledgments oo 0000028

D SUPPORTED DEVICES D1
Introduction D1
Versatec e, b i
PostScript printers D5
QMS Lasergrafix D6
Printronix D7
VT125 (DEC REGIS terminals) D9
VAX WorkstationsDb11
Sun WorkstationsDI12
GrinpellD13
IVASD13
Sigma ARGSD14
Tektronix 4006,4010D-14
Tektronix 4100DI1b
RetrographicsD15
Null DeviceD16
CanonD16
Colorwriter 6320 Plotter e b S
IkonD18

vil

ZetaD-18

E WRITING A DEVICE HANDLER E1
Introduction E1
Device handler interface E2
Handler state E3
Summary of operations E4

Testing a new device handlerEI10

F CALLING PGPLOT FROM A C PROGRAM F-1
Introduction F1
Convex UNIX F2

viil

Chapter 1

INTRODUCTION

1.1 PGPLOT

PGPLOT is a Fortran subroutine package for drawing simple scientific
graphs on various graphics display devices. It was originally developed for
use with astronomical data reduction programs in the Caltech Astronomy
department.

This manual is intended for the Fortran programmer who wishes to
write a program generating graphical output. For most applications, the
program can be device-independent, and the output can be directed to the
appropriate device at run time. The output device is described by a “device
specification,” discussed below. The programmer can build a specific device
specification into the program, but it is better to make this a parameter
which the user of the program can supply.

All the examples in this manual use standard Fortran-77. PGPLOT
itself is written mostly in standard Fortran-77, with a few non-standard,
system-dependent subroutines. At Caltech, it runs under the VAX/VMS,
Convex-UNIX, and Sun-UNIX operating systems.

1.2 This Manual

This manual is intended both as a tutorial introduction to PGPLOT and
as a reference manual. The remainder of this chapter describes some fun-
damentals: how to include the PGPLOT library in your program, and the
types of graphic devices that PGPLOT can use.

Chapter 2 is tutorial: it presents a Fortran program for drawing a graph
using the minimum number of PGPLOT subroutines, and explains what
each of these subroutines does. After reading this chapter, you should be
able to write your own PGPLOT program, although it may be helpful to
refer to the individual subroutine descriptions in Appendix A.

The basic features of PGPLOT are introduced in Chapters 3, 4, and 5.
Chapter 3 explains the positioning and scaling of plots on the page, Chapter
4 describes the basic (“primitive”) routines for drawing lines, writing text,
drawing graph markers, and shading areas, and Chapter 5 describes the

1-2 INTRODUCTION

routines for changing the “attributes” of these primitives: color, line-style,
line-width, text font, etc.

Chapter 6 describes some “high level” routines that use the primitive
routines to build up more complicated pictures: e.g., function plots, his-
tograms, bar charts, and contour maps.

Chapter 7 describes PGPLOT’s capabilities for “interactive” graphics,
whereby the user of the PGPLOT program can control its action with a
cursor, joystick, mouse, etc.

Chapter 8 describes the use of “metafiles”. A metafile is a disk file in
which a device-independent representation of a graphics image can be stored.
A translation program allows the image to be displayed on any supported
device.

There are six appendices. Appendix A is a list of all the PGPLOT
routines, with detailed instructions for their use. Appendix B shows the
complete set of PGPLOT characters and symbols that can be used for an-
notating graphs. Appendix C is intended for those who want to install
PGPLOT on another machine. Appendix D gives details of the devices
supported by PGPLOT. Appendix E provides instructions for programmers
who want to extend PGPLOT to support other devices. Appendix F de-
scribes how PGPLOT subroutines can be called from a program written in
the C language.

1.3 Using PGPLOT

In order to use PGPLOT subroutines, you will need to link your program
with the graphics subroutine library.

VAX/VMS On the Caltech Astronomy VAX computers, the graphics
subroutine library is scanned automatically by the LINK command, so the
following sequence of instructions suffices to compile, link, and run a graphics
program EXAMPLE.FOR:

$ FORTRAN EXAMPLE
$ LINK EXAMPLE
$ RUN EXAMPLE

On other VMS computers, the automatic search of the graphics library may
not occur. You will then need to include the graphics library explicitly by
using a LINK commands like the following;:

$ LINK EXAMPLE,PGPLOT_DIR:GRPSHR/LIB

INTRODUCTION 1-3

The PGPLOT subroutines are not included in your .EXE file, but are fetched
from a shareable image when you execute the RUN command. This makes
the .EXE file much smaller, and means that the program need not be re-
linked when changes are made to the graphics subroutines; but the .EXE file
can only be run on a machine that has a copy of the shareable image and
is running a compatible version of VAX/VMS. For more information, see
Appendix C.

Unix The following assumes that the PGPLOT library 1libpgplot.a has
been installed in a standard location where the loader can find it. To com-
pile, link, and run a graphics program example.f:

fc -o example example.f -lpgplot
example

Unlike the VMS version, the PGPLOT routines are included in the exe-
cutable file.

1.4 Graphics Devices

Graphics devices fall into two classes: devices which produce a hardcopy
output, usually on paper; and interactive devices, which usually display the
plot on a TV monitor. Some of the interactive devices allow modification to
the displayed picture, and some have a movable cursor which can be used as
a graphical input device. There is also a “null device,” to which unwanted
graphical output can be directed. Hardcopy devices are not used interac-
tively. One must first create a disk file and then send it to the appropriate
device with a print or copy command. Consult Appendix D (or your System
Manager) to determine the appropriate device-specific command.

A PGPLOT graphical output device is described by a “device specifica-
tion” that consists of two parts, separated by a slash (/): the device name
or file name, and the device type.

Device name The device name or file name is the name by which the
output device is known to the operating system. For most hardcopy de-
vices, this should be the name of a disk file, while for interactive devices, it
should be the name of a device of the appropriate type; in both cases, the
name should be specified according to the syntax of the operating system
in use. If the device or file name includes a slash (/), enclose the name in
double quotation marks ("). If the device name is omitted from the device
specification, a default device is used, the default depending on the device
type (see Appendix D). In Unix, device and file names are case-sensitive.

1-4 INTRODUCTION

Device type The device type tells PGPLOT what sort of graphical de-
vice it is. Appendix D lists the device types available at the time of writing,
together with the names by which they are known to PGPLOT. If the de-
vice type is omitted, a system-dependent default type is assumed (this is
the value of the “environment variable” PGPLOT_TYPE, and on Phobos and
Deimos it is “Printronix”). The device type is not case-sensitive: you can
use uppercase or lowercase letters, or a mixture of the two.

Examples (VMS)

Tektronix 4006/4010 terminal: TTA4/TEK (device _TTA4:).
Grinnell image display: /GRIN.

Disk file, Printronix format: SYS$SCRATCH:PLOT.DAT/PRIN.

Disk file, Versatec format, with the output file on a different DECnet node:
DEIMOS: :XPLOT.DAT/PRIN.

Disk file in default format in default directory: PGPLOT.LIS.

Examples (Unix)

Tektronix 4006/4010 terminal: /TEK (the logged-in terminal).
IVAS image display: /IVAS.

Disk file, Printronix format: "/scr/tjp/plot.dat"/PRIN.
Disk file in default format in default directory: pgplot.lis.

1.5 Environment variables

The run-time behavior of PGPLOT can be modified by defining one or more
environment variables. The variables have names which begin with PGPLOT_.
In VMS, they are logical names; in Unix, they are Unix environment vari-
ables.

To set the value of a variable in VMS (DCL):
$ DEFINE PGPLOT_ENVOPT VG

In Unix (csh):
setenv PGPLOT_ENVOPT VG

Quotation marks may be required around the value (double-quotes in VMS,
single quotes in Unix) to prevent interpretation of special characters by the
command interpreter.

To unset a variable in VMS or Unix:

$ DEASSIGN PGPLOT_ENVOPT
unsetenv PGPLOT_ENVOPT

INTRODUCTION 1-5

The following are some of the environment variables currently in use:
PGPLOT_ENVOPT: this variable provides additional options for the PGENV
subroutine (see description in Appendix A).

PGPLOT_FONT: the name of the binary file containing character font dig-
itization, e.g., PGPLOT_FONT = "/usr/tjp/grfont.dat".

PGPLOT_IDENT: if this variable is defined (with any value), the user name
and time are written at the lower right corner of the plot by routine
PGEND (hardcopy devices only), e.g., PGPLOT_IDENT = YES.

PGPLOT_TYPE: the plot type to be used in PGPLOT when a device spec-
ification omits the type, e.g., PGPLOT_TYPE = QMS.

PGPLOT_BUFFER: controls buffering (see Chapter 7).

Chapter 2

SIMPLE USE OF PGPLOT

2.1 Introduction

This chapter introduces the basic subroutines needed to create a graph us-
ing PGPLOT, by way of a concrete example. It does not describe all the
capabilities of PGPLOT; these are presented in later chapters.

A graph is composed of several elements: a box or axes delineating the
graph and indicating the scale, labels if required, and one or more points
or lines. To draw a graph you need to call at least four of the PGPLOT
subroutines:

1. PGBEGIN, to start up PGPLOT and specify the device you want to plot
on;
2. PGENV, to define the range and scale of the graph, and draw labels, axes
etc;
3. one or more calls to PGPOINT or PGLINE or both, or other drawing rou-
tines, to draw points or lines.
4. PGEND to close the plot.
To draw more than graph on the same device, repeat steps (2) and (3). It
is only necessary to call PGBEGIN and PGEND once each, unless you want to
plot on more than one device.

This chapter presents a very simple example program to demonstrate

the above four steps.

2.2 An Example

A typical application of PGPLOT is to draw a set of measured data points
and a theoretical curve for comparison. This chapter describes a simple
program for drawing such a plot; in this case there are five data points

2-2 SIMPLE USE OF PGPLOT

and the theoretical curve is y = 22. Here is the complete Fortran code for

the program:

PROGRAM SIMPLE

REAL
REAL
DATA
DATA
CALL
CALL
CALL
CALL

XR(100), YR(100)

XsS(58), YsS(5)

Xs/1.,2.,3.,4.,5./
Ys/1.,4.,9.,16.,25./

PGBEGIN(0,°??,1,1)
PGENV(0.,10.,0.,20.,0,1)

PGLABEL(’ (x)’, ’(y)’, ’A Simple Graph’)
PGPOINT(5,XS,YS,9)

DO 10 I=1,60

XR(I) = 0.1%I
YR(I) = XR(I)**2

10 CONTINUE

CALL
CALL
END

The following sections of this chapter describe how the program works, and

PGLINE(60,XR,YR)
PGEND

the resulting plot is shown in Figure 2.1.

2.3 Data Initialization

We shall store the z and y coordinates of the five data points in arrays XS
and YS. For convenience, this program defines the values in DATA statements,
but a more realistic program might read them from a file. Arrays XR and

YR will be used later in the program for the theoretical curve.

REAL
REAL
DATA
DATA

XR(100), YR(100)
XsS(5), Ys(5)
Xs/1.,2.,3.,4.,5./
Ys/1.,4.,9.,16.,25./

SIMPLE USE OF PGPLOT 2-3

A Simple Graph

Figure 2.1 Output from example program.

2.4 Starting PGPLOT

The first thing the program must do is to start up PGPLOT and select the
graphics device for output:

CALL PGBEGIN(O0,’7’,1,1)

Subroutine PGBEGIN has four arguments:

1. The first argument is present for historical reasons. It should always be
set to zero (0).

2. The second argument is a character string which gives a “device spec-
ification” for the interactive graphics device or disk file for hardcopy
graphics (see Chapter 1 and Appendix D). This program makes use of a
special shorthand feature of PGPLOT, however: if this argument is set
to 27’ the program will ask the user to supply the device specification
at run-time.

3, 4. The last two arguments are described in §3.2. Usually they are both
set to 1, as in this example.

2-4 SIMPLE USE OF PGPLOT

2.5 Defining Plot Scales and Drawing Axes

Subroutine PGENV starts a new picture and defines the range of variables
and the scale of the plot. PGENV also draws and labels the enclosing box and
the axes if requested. In this case, the z-axis of the plot will run from 0.0
to 10.0 and the y axis will run from 0.0 to 20.0.

CALL PGENV(0.,10.,0.,20.,0,1)

PGENV has six arguments:
1, 2. the left and right limits for the z (horizontal) axis (real numbers, not
integers).

4. the bottom and top limits for the y (vertical) axis (also real numbers).

5. If this (integer) argument is 1, the scales of the z-axis and y-axis (in units
per inch) will be equal; otherwise the axes will be scaled independently.
In this case we have not requested equal scales.

6. This argument controls whether an enclosing box, tick-marks, numeric
labels, and/or a grid will be put on the graph. The recommended value
is 0. Some of the allowed values are:

—2: no annotation;
—1: draw box only;
0: draw box, and label it with coordinate values around the edge;
1: in addition to the box and labels, draw the two axes (lines z = 0,
y = 0) with tick marks;
2: in addition to the box, labels, and axes, draw a grid at major in-
crements of the z and y coordinates.

2.6 Labeling the Axes

Subroutine PGLABEL may (optionally) be called after PGENV to write identi-
fying labels on the z and y axes, and at the top of the picture:

CALL PGLABEL(’(x)’, ’(y)’, ’A Simple Graph’)

All three arguments are character variables or constants; any of them can

be blank (>).
1. A label for the z-axis (bottom of picture).
2. A label for the y-axis (left-hand edge).
3. A label for the plot (top of picture).

SIMPLE USE OF PGPLOT 2-5

2.7 Drawing Graph Markers

Subroutine PGPOINT draws graph markers at one or more points on the
graph. Here we use it to mark the five data points:

CALL PGPOINT(5,XS,YS,9)

If any of the specified points fall outside the window defined in the call to
PGENV, they will not be plotted. The arguments to PGPOINT are:

1. The number of points to be marked (integer).
2, 3. The z and y coordinates of the points (real arrays).

4. The number of the symbol to be used to mark the points. In this
example, we use symbol number 9 which is a circle with a central dot.
The available symbols are shown in Chapter 4.

2.8 Drawing Lines

The following code draws the “theoretical curve” through the data points:

DO 10 I=1,60
XR(I) = 0.1xI
YR(I) = XR(I)**2
10 CONTINUE
CALL PGLINE(60,XR,YR)

We compute the z and y coordinates at 60 points on the theoretical curve,
and use subroutine PGLINE to draw a curve through them. PGLINE joins
up the points with straight-line segments, so it is necessary to compute
coordinates at fairly close intervals in order to get a smooth curve. Any lines
which cross the boundary of the window defined in PGENV are “clipped” at
the boundary, and lines which lie outside the boundary are not drawn. The
arguments of PGLINE are like those of PGPOINT:

1. The number of points defining the line (integer).

2, 3. The z and y coordinates of the points (real arrays).

2.9 Ending the Plot

Subroutine PGEND must be called to complete the graph properly, otherwise
some pending output may not get sent to the device:

CALL PGEND

2-6 SIMPLE USE OF PGPLOT

2.10 Compiling and running the program

To compile the program and link it with the PGPLOT library, see Chapter 1.
For example, under VMS:

$ EDIT SIMPLE.FOR

$ FORTRAN SIMPLE
$ LINK SIMPLE

Under Unix:
ed simple.f

fc -o simple simple.f -lpgplot

When you run the program, it will ask you to supply the graphics device
specification. Type in any allowed device specification, or type a question-
mark (7) to get a list of the available device types. For example, if you are
using a VT'125 terminal, type /VT: the graph will appear on the terminal
screen.

If you want a hard copy, you can run the program again, and specify a
different device type, e.g., SIMPLE.PLT/VERS to make a disk file in Versatec
format. To obtain the hard copy, print the file (but first check with your
system manager what the correct print command is; it is possible to waste
a lot of paper by using the wrong command or sending a file to the wrong
sort of printer!).

Chapter 3

WINDOWS AND VIEWPORTS

3.1 Introduction

This chapter is concerned with positioning a graph on the screen or hardcopy
page, and controlling its scale. In simple applications, the position and scale
of the graph are controlled more-or-less automatically by the routine PGENV,
but in order to obtain complete control of positioning and scaling, it is
necessary to understand the concepts of the View Surface, the Window, and
the Viewport, and two coordinate systems: World Coordinates and Device
Coordinates.

A simple PGPLOT picture might be a two-dimensional graph showing
the dependence of one variable on another. A typical graph has data points,
represented by error bars or special markers such as dots or diamonds, possi-
bly connected by lines, or perhaps plotted on the same scale as a theoretical
model drawn as a smooth curve. The graph must be labeled with two axes
to indicate the coordinate scales.

The programmer must describe to PGPLOT the various elements of the
graph in terms of rectangular Cartesian coordinates. The only limitation
on the coordinates is that they be represented as floating-point (REAL*4)
numbers; otherwise we are totally free to choose the meaning of the co-
ordinates. For example, in a graph showing the temporal variation of a
radio source, the abscissa (z-coordinate) might be Epoch (in years) and the
ordinate (y-coordinate) Flux Density (in Jy).

In accordance with common practice in graphics programming, these
coordinates, chosen by the programmer, are termed world coordinates. PG-
PLOT maps a selected rectangular region of the world-coordinate space
(termed the window) onto a specified rectangle (termed the viewport) on
the view surface (the screen of an interactive display or a sheet of paper on
a hardcopy plotter). The program must make calls to PGPLOT routines to
define both the window and the viewport. For complete descriptions of the
routines and their arguments, refer to Appendix A.

3-2 WINDOWS AND VIEWPORTS

3.2 Selecting a View Surface

The first thing a graphics program must do is to tell PGPLOT what device
it is going to use. This is done by calling routine PGBEGIN. For example, to
create a plot file for the Versatec printer:

CALL PGBEGIN (O, ’PLOTFILE.LIS/VERSATEC’, 1, 1)

Equally important, when all plotting has been completed, it is necessary to
call PGEND to flush any pending plot requests:

CALL PGEND

Note that only one device can be used at a time. If PGBEGIN is called while
a plot is in progress, the old plot is closed and a new one is begun.

After calling PGBEGIN the program has access to a view surface. For
interactive devices, this is the full screen of the device. For hardcopy devices,
it is a standard page, usually 10(z) x 8.5(y) inches on a device used in
“landscape” mode (e.g., device types /VE and /QMS), or 8.5(z) x 10(y) inches
a device used in “portrait” mode (e.g., device types /VV and /VQMS).

On some devices, it is possible to plot on a larger piece of paper than
the standard page; see the description of routine PGPAPER, which must be
called immediately after PGBEGIN to change the size of the view surface. The
different devices differ not only in the size of the view surface, but also in
its aspect ratio (height/width). PGPAPER can be called to ensure that a plot
has the same aspect ratio no matter what device it is plotted on.

After completing a graph, it is possible to advance to a new page to
start a new graph (without closing the plot file) by calling PGPAGE:

CALL PGPAGE

This clears the screen on interactive devices, or gives a new piece of paper
on hardcopy devices. It does not change the viewport or window.

The last two arguments of PGBEGIN (NX and NY) can be used to sub-
divide the view surface into smaller pieces called sub-pages, each of which
can then be used separately. The view-surface is divided into NX (hori-
zontally) by NY (vertically) sub-pages. When the view surface has been
subdivided in this way, PGPAGE moves the plotter to the next sub-page, and
only clears the screen or loads a new piece of paper if there are no sub-pages
left on the current page.

In addition to selecting the view surface, PGBEGIN also defines a default
viewport and window. It is good practice, however, to define the viewport
and window explicitly as described below.

WINDOWS AND VIEWPORTS 3-3

3.3 Defining the Viewport

A wiewport is a rectangular portion of the plotting surface onto which the
graph is mapped. PGPLOT has a default viewport which is centered on the
plotting surface and leaves sufficient space around it for annotation. The
application program can redefine the viewport by calling routine PGVPORT
or PGVSIZE.

PGVPORT defines the viewport in a device-independent manner, using
a coordinate system whose coordinates run from 0 to 1 in both z and y.
This coordinate system is called normalized device coordinate space. For
example, if we wish to divide the view surface into four quadrants and map
a different plot onto each quadrant, we can define a new viewport before
starting each plot. PGVPORT has the format:

CALL PGVPORT (XMIN, XMAX, YMIN, YMAX)

For example, to map the viewport onto the upper left quadrant of the view
surface:

CALL PGVPORT (0.0, 0.5, 0.5, 1.0)

(Note that this does not leave room around the edge of the viewport for
annotation.)

PGVSIZE defines the viewport in absolute coordinates (inches); it should
only be used when it is known how big the view surface is and a definite plot
scale is required. The arguments are the same as for PGVPORT, but measured
in inches from the bottom left corner of the view surface. For example:

CALL PGVSIZE (1.5, 9.5, 1.5, 6.5)

defines a rectangular viewport 8 by 5 inches, offset 1.5 inches from the
bottom and left edges of the view surface.

PGVSTAND defines a standard viewport, the size of which depends on the
particular device being used, and on the current character size (it uses the
whole view surface excluding a margin of four character heights all around):

CALL PGVSTAND

This is the default viewport set up by PGBEGIN.

Note that the viewport must be defined before calling any routines that
would actually generate a display. The viewport may, however, be changed
at any time: this will affect the appearance of objects drawn later in the
program.

3-4 WINDOWS AND VIEWPORTS

3.4 Defining the Window

The program defines the window by calling routine PGWINDOW, whose argu-
ments specify the world-coordinate limits of the window along each coordi-
nate axis. e.g.:

CALL PGWINDOW (1975.0, 1984.0, 5.0, 20.0)

specifies that the z-axis (epoch) is going to run (left to right) from 1975 to
1984, and the y-axis (flux density) is going to run (bottom to top) from 5 to
20 Jy. Note that the arguments are floating-point numbers (Fortran REAL
variables or constants), and require decimal points. If the order of either
the z pair or the y pair is reversed, the corresponding axis will point in the
opposite sense, i.e., right to left for z or top to bottom for y. PGPLOT uses
the window specification to construct a mapping that causes the image of
the window to coincide with the viewport on the view surface. Furthermore,
PGPLOT “clips” lines so that only those portions of objects that lie within
the window are displayed on the view surface.

Like the viewport, the window must be defined before drawing any
objects. The window can be defined either before or after the viewport: the
effect will be the same. The default window, set up by PGBEGIN, has x limits
0.0-1.0 and y limits 0.0-1.0.

If the ratio of the sides of the window does not equal the ratio of the
sides of the viewport, the mapping of the world coordinates onto the view
surface results in an image whose shape is compressed in either z or y. One
way to avoid this compression is to carefully choose the viewport to have the
same aspect ratio as the window. Routine PGWNAD can do this: it defines the
window and simultaneously adjusts the viewport to have the same aspect
ratio as the window. The new viewport is the largest that can fit inside the
old one, and is centered in the old one.

3.5 Annotating the Viewport

For a simple graph, it is usually necessary to draw a frame around the
viewport and label the frame with tick marks and numeric labels. This can
be done with the routine PGBOX. For our sample graph, the call might be:

CALL PGBOX (’BCTN’, 0.0, O, ’BCNST’, 0.0, O)

Another routine, PGLABEL, provides text labels for the bottom, left hand
side, and top of the viewport:

CALL PGLABEL (’Epoch’, ’Flux Density (Jy)’,
’Variation of 3C345 at 10.7 GHz’)

WINDOWS AND VIEWPORTS 3-5

The first two arguments provide explanations for the two axes; the third
provides a title for the whole plot. Note that unlike all the other plotting
routines, the lines and characters drawn by PGBOX and PGLABEL are not
clipped at the boundaries of the window. PGLABEL actually calls a more
general routine, PGMTEXT, which can be used for plotting labels at any point
relative to the viewport.

The amount of space needed outside the viewport for annotation de-
pends on the exact options specified in PGBOX; usually four character heights
will be sufficient, and this is the amount allowed when the standard view-
port (created by PGVSTAND) is used. The character height can be changed
by using routine PGSCH.

3.6 Routine PGENV

Having to specify calls to PGPAGE, PGVPORT, PGWINDOW, and PGBOX is exces-
sively cumbersome for drawing simple graphs. Routine PGENV (for PGplot
ENVironment) combines all four of these in one subroutine, using the stan-
dard viewport, and a limited set of the capabilities of PGBOX. For example,
the graph described above could be initiated by the following call:

CALL PGENV (1975.0, 1984.0, 5.0, 20.0, 0, 0)

which is equivalent to the following series of calls:

CALL PGPAGE

CALL PGVSTAND

CALL PGWINDOW (1975.0, 1984.0, 5.0, 20.0)
CALL PGBOX (’BCNST’, 0.0, O, ’BCNST’, 0.0, 0)

PGENV uses the standard viewport. The first four arguments define the
world-coordinate limits of the window. The fifth argument can be 0 or 1;
it is 1, PGENV calls PGWNAD instead of PGWINDOW so that the plot has equal
scales in = and y. The sixth argument controls the amount of annotation.

Chapter 4

PRIMITIVES

4.1 Introduction

Having selected a view surface and defined the viewport and the window,
we are ready to draw the substance of the image that is to appear within the
viewport. This chapter describes the most basic routines, called primitives,
that can be used for drawing elements of the image. There are four different
sorts of primitive: [ines, graph-markers, text, and area fill. Chapter 5 ex-
plains how to change the atiributes of these primitives, e.g., color, line-style,
text font; and Chapter 6 describes some higher-level routines that simplify
the composition of images that would require a large number of calls to the
primitive routines.

The primitive routines can be used in any combination and order after
the viewport and window have been defined. They all indicate where the
primitive is to appear on the view surface by specifying world coordinates.
See the subroutine descriptions in Appendix A for more details.

4.2 Clipping

The primitives are “clipped” at the edge of the viewport: any parts of the
image that would appear outside the viewport are suppressed. The various
primitives behave slightly differently. A [ine is clipped where it crosses
the edge of the viewport. A graph marker is plotted if the center (the point
marked) lies within or on the edge of the viewport; otherwise it is suppressed.
Text, which is usually used for annotation, is not clipped (except at the edge
of the view surface. A filled area is clipped at the edge of the viewport.

4-2 PRIMITIVES

4.3 Lines

The primitive line-drawing routine is PGLINE. This draws one or more con-
nected straight-line segments (generally called a polyline in computer graph-
ics). It has three arguments: the number (N) of points defining the polyline,
and two arrays (XPTS and YPTS) containing the world z and y-coordinates of
the points. The polyline consists of N — 1 straight-line segments connecting
points 1-2,2-3, ..., (N —1)-N:

CALL PGLINE (N, XPTS, YPTS)

The two routines PGMOVE and PGDRAW are even more primitive than PG-
LINE, in the sense that any line graph can be produced by calling these two
routines alone. In general, PGLINE should be preferred, as it is more modular.
PGMOVE and PGDRAW are provided for those who are used to Calcomp-style
plotting packages. PGMOVE moves the plotter “pen” to a specified point, with-
out drawing a line (“pen up”). It has two arguments: the world-coordinates
of the required new pen position. PGDRAW moves the plotter “pen” from its
current position (defined by the last call of PGMOVE or PGDRAW) to a new
point, drawing a straight line as it goes (“pen down”). The above call to
PGLINE could be replaced by the following;:

CALL PGMOVE (XPTS(1), YPTS(1))

DO I=2,N
CALL PGDRAW (XPTS(I), YPTS(I))
END DO

4.4 Graph Markers

A Graph Marker is a symbol, such as a cross, dot, or circle, drawn on a
graph to mark a specific point. Usually the symbol used will be chosen
to be symmetrical with a well-defined center. The routine PGPOINT draws
one or more graph markers (sometimes called a polymarker). It has four
arguments: the number (N) of points to mark, two arrays (XPTS and YPTS)
containing the world z and y-coordinates of the points, and a number (NSYM)
identifying the symbol to use:

CALL PGPOINT (N, XPTS, YPTS, NSYM)

The symbol number can be: —1, to draw a dot of the smallest possible size
(one pixel); 0-31, to draw any one of the symbols in Figure 4.1; or 33-127,
to draw the corresponding ASCII character (the character is taken from the
currently selected text font); or > 127, to draw one of the Hershey symbols
from Appendix B. The Fortran ICHAR function can be used to obtain the
ASCII value; e.g., to use letter F:

CALL PGPOINT (1, 0.5, 0.75, ICHAR(’F’))

PRIMITIVES

0 1 2 3

*
4 5 6 7

A
8 9 10 11

Q
12 13 14 15

ZX
16 17 18 19

[]
20 21 22 23

O
24 25 26 27
28 29 30 31

\2

Figure 4.1 Standard Graph Markers.

4-3

4-4 PRIMITIVES

4.5 Text

The Text primitive routine is used for writing labels and titles on the im-
age. It converts an internal computer representation of the text (ASCII
codes) into readable text. The simplest routine for writing text is PGTEXT,
which writes a horizontal character string starting at a specific (z,y) world
coordinate position, e.g.,

CALL PGTEXT (X, Y, ’A text string’)

PGTEXT is actually a simplified interface to the more general primitive routine
PGPTEXT, which allows one to change orientation and justification of the text,

e.g.,
CALL PGPTEXT (X, Y, 45.0, 0.5, ’A text string’)

writes the text at an angle of 45° to the horizontal, centered at (z,y) (see

Appendix A).

Both PGTEXT and PGMTEXT require the position of the text string to be
specified in world coordinates. When annotating a graph, it is usually more
convenient to position the text relative to the edge of the viewport, rather
than in world-coordinate space. The routine PGMTEXT (see Appendix A) is
provided for this, and PGLABEL provides a simple interface to PGMTEXT for
the normal job of annotating an (z,y) graph.

The appearance of text can be altered by specifying a number of at-
tributes, described in the next chapter. In particular, the character size and
character font can be changed. Figure 4.2 illustrates some of the possibili-
ties.

To include one of the graph marker symbols in a text string, use the
Fortran CHAR function, e.g.,

CALL PGTEXT (X, Y, ’Points marked with ’//CHAR(17))

The routine PGPTEXT (and all the PGPLOT routines which call it, e.g.,
PGTEXT, PGLABEL) allows one to include escape sequences in the text string
to be plotted. These are character-sequences that are not plotted, but are
interpreted as instructions to change font, draw superscripts or subscripts,
draw non-ASCII characters (e.g., Greek letters), etc. All escape sequences
start with a backslash character (\). The following escape sequences are
defined (the letter following the \ may be either upper or lower case):

\u — start a superscript, or end a subscript;

\d — start a subscript, or end a superscript (note that \u and \d must always
be used in pairs);

PRIMITIVES

Normal: ABCDQ efgh 1234 afyd NOAQ
Roman: ABCDQ efgh 1234 afydé AGAQ
italic: ABCDQ efgh 1234 afyo ABAQ

Script: ABED2 ofgh 1234 afyd AOAQ

flx) = xzcos(Zﬁx)exz

1 -1

H, =75 + 25 km s

0 Mpc

£/¢; = 5.6 (A\12164)

Bigger (1.5) cwwes

Left justified (0.0)

Centered (0.5)
Ne
Right justified (1.0), ~
&
O
¥

4-5

Figure 4.2 Text examples.

4-6 PRIMITIVES

\b — backspace (i.e., do not advance text pointer after plotting the previous
character);

\\ - backslash character (\);

\A — Angstrém symbol (A);

\gz — greek letter corresponding to roman letter x;

\fn — switch to Normal font (1);

\fr - switch to Roman font (2);

\fi — switch to Italic font (3);

\fs — switch to Script font (4);

\(n) — character number n (1 to 4 decimal digits); the closing parenthesis
may be omitted if the next character is neither a digit nor “)”. This makes
a number of special characters (e.g., mathematical, musical, astronomical,
and cartographical symbols) available. See Appendix B for a list of available
characters.

Greek letters are obtained by \g followed by one of the following upper-
case and lower-case letters:

use: ABGDEZY HIKLMNCOPRSTUFXQW
forr ABI'AEFEZHOIKAMNZONOPYTTY XV ()
or: abgdezyhtklmmnecoprstufazqgw
forr afByd6de(n bt XpvEompoTveodyxvw

Use uppercase letters for uppercase Greek, lowercase for lowercase. Exam-
ple: \gh is 6, lowercase “theta”.

4.6 Area Fill

The Area Fill primitive allows the programmer to shade the interior of an
arbitrary polygonal region. The appearance of the primitive is controlled
by attributes fill area style and color index (see Chapter 5). An area is
specified by the set of vertices of the polygon.

The routine PGPOLY is used to fill an area. It has three arguments: the
number (N) of vertices defining the polygon, and two arrays (XPTS and YPTS)
containing the world z and y-coordinates of the vertices:

CALL PGPOLY (N, XPTS, YPTS)

If the polygon is not convex, it may not be obvious which points in the
image are inside the polygon. PGPLOT assumes that a point is inside the
polygon if a straight line drawn from the point to infinity intersects an odd
number of the polygon’s edges.

PRIMITIVES 4-7

For the special case of a rectangle with edges parallel to the coordinates
axes, it is better to use routine PGRECT instead of PGPOLY; this routine will
use the hardware rectangle-fill capability if available. PGRECT has four argu-
ments: the (z,y) world coordinates of two opposite corners (note the order

of the arguments):

CALL PGRECT (X1, X2, Y1, Y2)

Chapter 5

ATTRIBUTES

5.1 Introduction

The appearance of the primitive elements of a graphical image (lines, graph-
markers, text, and area-fill) can be changed by specifying primitive at-
tributes. The attributes, and the corresponding routines for changing them,
are:

Color Index and Color Representation: PGSCI, PGSCR, and PGSHLS.
Line Style: PGSLS.

Line Width: PGSLW.

Character Height: PGSCH.

Character Font: PGSCF.

Fill-area Style: PGSFS.

The routines to change attributes can be freely intermixed with the
PGPLOT drawing routines. Once an attribute has been changed by a call
to the appropriate routine, it remains in effect for all subsequent plotting
until it is changed again. In addition to the routines that set attributes
(PGSxx) there are routines for determining the current value of each attribute
(PGQxx). These make it possible to write subroutines which change attribute
values temporarily but restore the old attributes before returning to the
calling program.

5.2 Color Index

This attribute affects all the primitives: lines, graph-markers, text, and
area-fill, and is controlled by two subroutines: PGSCI and PGSCR.

Devices differ considerably in their ability to draw in more than one
color. On most hardcopy devices, the default color is black on a white
background, while on most CRT devices, it is white (or green) on a black
background. Color is selected using an integer parameter called the color
index. Color index 1 is the default color, and color index 0 is the background
color. The number of different color indices available depends on the device.
On most monochrome devices, only color indices 0 and 1 are available, while

5-2 ATTRIBUTES

some color CRT devices may permit color indices from 0 to 255. On some
monochrome devices, color index can be used to select different brightnesses
(intensities).

Color index 0, the background color, can be used to “erase” elements
from a picture by overwriting them with color index 0. Note that not all
devices are capable of this: e.g., Tektronix storage-tube terminals and pen-
plotters cannot erase part of a displayed picture.

To select a new color index for subsequent plotting, use routine PGSCI

(Set Color Index).

Appendix D lists the capabilities of the devices for plotting in color and
variable intensity. The default color index is 1; all devices accept this. Most
devices also accept color index 0 (erase), and several accept color index up
to 15 or more. The maximum color index is the number of different colors
that can be displayed at once. Some devices permit the assignment of colors
to color indices to be changed (by calling PGSCR, see below).

5.3 Color Representation

Each color index has an associated Color Representation, which defines the
associated color and intensity. Color Representation may be expressed by
a set of three numbers, either the Hue, Lightness, and Saturation (H, L, S5)
components or the Red, Green, and Blue (R, G, B) components. (R,G, B)
are quantities in the range 0.0-1.0, with 1.0 being maximum intensity; if
R = G = B the color is a shade of gray. In the (H, L, S5) system, hue is a
cyclic quantity expressed as an angle in the range 0-360, while L and .S are
in the range 0.0-1.0.

Table 5.1 shows how the color indices are defined when PGPLOT is
started (not all are available on all devices). The default assignments of
colors to color indices can be changed with routine PGSCR, which permits
one to specify the (R,G, B) values for any color index, or PGSHLS, which
permits one to specify the (H,L,S5) values. Note that color-index 0, the
background color, can be redefined in this way.

The effect of PGSCR is device-dependent. One some devices, it will be
ignored. On others, (e.g., Grinnell, VT125) it will change the color of lines
which have already been drawn in the specified color index, while on others
(e.g., pen plotters) it will only affect lines drawn after the call of PGSCR.

ATTRIBUTES 5-3

Table 5.1 Default Color Representations

Color

Index Color (H,L,S) (R,G,B)
0 Black (background) 0, 0.00, 0.00 0.00, 0.00, 0.00
1 White (default) 0, 1.00, 0.00 1.00, 1.00, 1.00
9 Red 120, 0.50, 1.00 | 1.00, 0.00, 0.00
3 Green 940, 0.50, 1.00 | 0.00, 1.00, 0.00
4 Blue 0, 0.50, 1.00 | 0.00, 0.00, 1.00
5 Cyan (Green + Blue) 300, 0.50, 1.00 0.00, 1.00, 1.00
6 Magenta (Red + Blue) 60, 0.50, 1.00 1.00, 0.00, 1.00
7 Yellow (Red 4 Green) 180, 0.50, 1.00 1.00, 1.00, 0.00
8 Red + Yellow (Orange) 150, 0.50, 1.00 1.00, 0.50, 0.00
9 Green + Yellow 210, 0.50, 1.00 0.50, 1.00, 0.00
10 Green + Cyan 270, 0.50, 1.00 0.00, 1.00, 0.50
11 Blue + Cyan 330, 0.50, 1.00 | 0.00, 0.50, 1.00
12 Blue + Magenta 30, 0.50, 1.00 0.50, 0.00, 1.00
13 Red + Magenta 90, 0.50, 1.00 | 1.00, 0.00, 0.50
14 Dark Gray 0, 0.33,0.00 | 0.33,0.33,0.33
15 Light Gray 0, 0.66,0.00 | 0.66,0.66, 0.66

16-255 Undefined

5.4 Line Style

Line Style can be, e.g., solid, dashed, or dotted. The attribute affects only
lines, not the other primitives. It is controlled by subroutine PGSLS. The
default line style is a full, unbroken line. To change the line style, use routine
PGSLS. Line style is described by an integer code:

1 — full line,

2 — long dashes,

3 — dash-dot-dash-dot,
4 — dotted,

5 — dash-dot-dot-dot.

5.5 Line Width

Line Width affects lines, graph-markers, and text. A thick-nibbed pen is
simulated by tracing each line with multiple strokes offset in the direction
perpendicular to the line. The line width is specified by the number of
strokes. The default width is one stroke, and the maximum that may be
specified is 201. The exact appearance of thick lines is device-dependent—it
depends on the resolution of the device—but on hardcopy devices (e.g., QMS
Lasergrafix, Versatec) PGPLOT attempts to make the line-width increment

5-4 ATTRIBUTES

equal to 0.005 inches. Requesting a line-width of 10, say, should give lines
that are approximately 1/20 inch thick. To change the line width, use
routine PGSLW.

5.6 Character Height

Character Height affects graph-markers and text. Character height is speci-
fied as a multiple of the default character height; the default character height
one-fortieth of the height or width of the view surface (whichever is less).
To change the character height, use routine PGSCH.

5.7 Character Font

Character Font affects text only. Four fonts are available. The default font
(1) is simple and is the fastest to draw; the others should only be used
for presentation plots on a high-resolution device (e.g., Versatec or laser
printer). To change the character font, use routine PGSCF; it is also possible
to change the font temporarily by using escape sequences (see §4.4). The
font is defined by an integer code:

1 — normal (simple) font (default),
2 — roman font,

3 — italic font,

4 — script font.

5.8 Fill-Area Style

Fill-Area Style can be hollow (only the outline of the polygon is drawn), or
solid. The attribute may be extended in future to allow hatching and other
patterns. To change the fill-are style, use routine PGSFS. The style is defined
by an integer code:

1 - solid fill (default),
2 — hollow (outline only).

Chapter 6

HIGHER-LEVEL ROUTINES

6.1 Introduction

This chapter describes a number of “high level” routines that simplify the
composition of complicated graphical images. They include routines for
drawing graphs of one variable or function against another (“xy-plots”),
histograms, and display of two-dimensional data (functions of two variables).
Rather than giving complete details of all the available routines, this chapter
just points out some of the ways that they can be used. See Appendix A
for details of the calling sequences.

6.2 XY-plots

The basic technique for drawing xy-plots is described in Chapter 2, which
showed how to make scatler plots using graph markers produced by PGPOINT
and line plots produced by PGLINE. Considerable variation in the appearance
of the graph can be achieved using the following techniques.

Attributes. Use different attributes to distinguish different datasets.
Graph markers can be distinguished by choosing different markers, different
colors, or different sizes (character height attribute). Lines and curves can
be distinguished by line-style, color, or line-width.

Box parameters. If routine PGENV is replaced by calls to the more basic
routines (see §3.6), including PGBOX, considerable variety in the appearance
of the graph can be achieved. For example, one can suppress the tick marks,
draw the tick marks projecting out of the box instead of into it, or draw a
grid over the whole viewport. Note that PGBOX may be called many times:
one might call it once to draw a grid using thin dotted lines, and again to
draw the frame and tick marks using thick lines:

CALL PGSLW(1)

CALL PGSLS(4)

CALL PGB0X(’G’,30.0,0,°G’,0.2,0)

CALL PGSLW(3)

CALL PGSLS(1)

CALL PGBOX(’ABCTSN’,90.0,3,?ABCTSNV’,0.0,0)

6-2 HIGHER-LEVEL ROUTINES

Note that in this example we have also specified tick intervals explicitly. If
the horizontal axis is to represent an angle in degrees, it is convenient to
choose a tick interval that is a simple fraction of 360; here we have a major
tick interval of 90° and a minor tick interval of 30°.

Stepped-line plots. As an alternative to PGLINE, which “joins up the
dots” using straight line segments, it is sometimes appropriate to use PG-
BIN which produces a “stepped line plot” (sometimes misleadingly called
a histogram) with horizontal line segments at each data point and vertical
line segments joining them. This is often used, for example, in displaying
digitized spectra.

Error bars. Graphs of real data often require the inclusion of error bars.
The two routines PGERRX and PGERRY draw horizontal and vertical error bars,
respectively. These routines are usually used in combination with PGPOINT,
e.g., to draw a set of points with 20 error-bars:

DO 10 I=1,15
YHI = YPTS(I) + 2.0%ERR(I)
YLO = YPTS(I) - 2.0*ERR(I)
CALL PGPOINT(1, XPTS(I), YPTS(I), 17)
CALL PGERRY(1, XPTS(I), YLO, YHI, 1.0)
10 CONTINUE

Logarithmic axes. It is commonly required that the z-axis, the y-
axis, or both, be logarithmic instead of linear; that is, one wishes to plot
the logarithm of the quantity instead of its actual value. PGPLOT doesn’t
provide any automatic mechanism to do this: one has to adopt log,, « and/or
log,, v instead of z and y as world-coordinates; ¢.e., if the range of z is to
be 1 to 1000, choose as world-coordinate limits for the window log 1 = 0.0
and log 1000 = 3.0, and supply the logarithms of # to PGPOINT and PGLINE.
However, PGENV and PGBOX have options for labeling the axis logarithmically;
if this option is used in our example, the axis will have labeled major tick
marks at 1, 10, 100, and 1000, with logarithmically-spaced minor tick marks
at 2, 3,4, ..., 20, 30, 40, etc.. An example may make this clearer:

CALL PGENV(-2.0,2.0,-0.5,2.5,1,30)
CALL PGLABEL(’Frequency, \gn (GHz)’,

1 ’Flux Density, S\d\gn\u (Jy)’, ’ ’)
DO 10 I=1,15

XPTS(I) = ALOG10(FREQ(I))

YPTS(I) = ALOG10(FLUX(I))

10 CONTINUE
CALL PGPOINT(15, XPTS, YPTS, 17)

HIGHER-LEVEL ROUTINES 6-3

This is a fragment of a program to draw the spectrum of a radio source,
which is usually plotted as a log—log plot of flux density v. frequency. It
first calls PGENV to initialize the viewport and window; the AXIS argument
is 30 so both axes will be logarithmic. The z-axis (frequency, v) runs from
0.01 to 100 GHz, the y-axis (flux density, S,) runs from 0.3 to 300 Jy. Note
that it is necessary to specify the logarithms of these limits in the call to
PGENV. The penultimate argument requests equal scales in z and y so that
slopes will be correct. The program then marks 15 data points, supplying
the logarithms of frequency and flux density to PGPOINT.

6.3 Histograms

The routine PGHIST draws a histogram, that is, the frequency distribution
of measured values in a dataset. Suppose we have 500 measurements of a
quantity (the sky brightness temperature at 20 GHz, say, in mK) stored in
Fortran array VALUES. The following program-fragment draws a histogram
of the distribution of these values in the range 0.0 to 5.0, using 25 bins (so
that each bin is 0.2 K wide, the first running from 0.0 to 0.2, the second
from 0.2 to 0.4, etc.):

DO 10 I=1,500
VALUES(I) =
10 CONTINUE
CALL PGHIST(500, VALUES, 0.00, 5.00, 25, 0)
CALL PGLABEL(’Temperature (K)’,
1 ’Number of measurements’,
’Sky Brightness at 20 GHz’)

The histogram does not depend on the order of the values within the array.

6.4 Functions of two variables

A function of two variables, f = f(z,y), really needs a three-dimensional
display. PGPLOT does not have any three-dimensional display capability, but
it provides three methods for two-dimensional display of three-dimensional
data.

6-4 HIGHER-LEVEL ROUTINES

Contour maps. In a contour map of f(z,y), the world-coordinates are
x and y and the contours are lines of constant f. The PGPLOT contouring
routines (PGCONT and PGCONS) require the input data to be stored in a two-
dimensional Fortran array F, with element F(I,J) containing the value of
the function f(z,y) for a point (z;,y;). Furthermore, the function must be
sampled on a regular grid: the (z,y) coordinates corresponding to (I,J)
must be related to I and J by:

x=a+bIl+cJ,
y=d+el+ fIJ.

The constants a,b,c,d, e, f are supplied to PGCONT in a six-element Fortran
array. The other input required is an array containing the contour values,
i.€., the constant values of f corresponding to each contour to be drawn.
In the following example, we assume that values have been assigned to the
elements of array F. We first find the maximum and minimum values of
F, and choose 10 contour levels evenly spaced between the maximum and
minimum:

REAL F(50,50), ALEV(10), TR(6)

FMIN = F(1,1)
FMAX = F(1,1)
DO 300 I=1,50
DO 200 J=1,50
FMIN = MIN(F(I,J),FMIN)
FMAX = MAX(F(I,J),FMAX)
200 CONTINUE
300 CONTINUE
DO 400 I=1,10
ALEV(I) = FMIN + (I-1)*(FMAX-FMIN)/9.0
400 CONTINUE

Next, we choose a window and viewport, and set up an array TR contain-
ing the 6 constants in the transformation between array indices and world
coordinates. In this case, the transformation is simple, as we want z = I,
y=J:

CALL PGENV(0.,50.,5.,45.,0,2)

TR(1) = 0.0
TR(2) = 1.0
TR(3) = 0.0
TR(4) = 0.0
TR(5) = 0.0

1.0

TR(6) =

HIGHER-LEVEL ROUTINES 6-5

Finally, we call PGCONT; actually, we call it twice, to draw the first five
contours in color index 2 (red) and the remaining 5 in color index 3 (green):

CALL PGSCI(2)

CALL PGCONT(F,50,50,1,50,1,50,ALEV,5,TR)
CALL PGSCI(3)

CALL PGCONT(F,50,50,1,50,1,50,ALEV(6),5,TR)

Normally PGCONT is preferable to PGCONS. See the description in Appendix A
for suggestions as to when PGCONS should be used.

Gray-scale plots. The routine PGGRAY is used in a similar way to PG-
CONT. Instead of drawing contours, it shades the interior of the viewport,
the intensity of shading representing the value of the function at each point.
The exact appearance of the resulting “image” is device-dependent. On
some devices, PGGRAY does the shading by drawing many dots, so it can be
very slow.

Cross sections. Routine PGHI2D draws a series of cross-sections through
a two-dimensional data array. Each cross-section “hides” those that appear
behind it, giving a three-dimensional effect. See Appendix A for details.

Chapter 7

INTERACTIVE GRAPHICS

7.1 Introduction

The previous chapters have described how to produce a static graphical im-
age: if the same program is run twice with the same input parameters, the
same image will result. An inleractive program allows the user to control
the behavior of the program with a graphical input device. PGPLOT sup-
ports a limited interactive capability on devices with a cursor for graphical
input (e.g., Grinnell, VT125 terminal, some Tektronix terminals, VT640
Retrographics terminal). The capabilities are necessarily limited by the aim
to keep PGPLOT device-independent.

7.2 The Cursor

Some of the graphics devices supported by PGPLOT have a graphics cursor.
This appears on the view surface as a plus sign, a cross-hair, or a diamond,
and can be moved around the view surface with a joy-stick, mouse, or track-
ball attached to the graphics device. If the hardware does not provide this
mechanism, PGPLOT allows the user to move the cursor using the arrow
keys on his terminal. See Appendix D for instructions for using the cursor
on a specific device.

7.3 Using the Cursor

The basic routine for cursor input is PGCURSE. This routine enables the
cursor on the selected device, positions it at a specified location within the
viewport, and allows the user to move it. When the user has positioned the
cursor, he types a key on his terminal; PGCURSE returns the cursor position
(in world coordinates) and the character that was typed.

In addition, PGPLOT provides three higher-level routines for cursor
input: PGOLIN, PGNCURSE, and PGLCUR. These three routines require that
the device has erase capability.

7-2 INTERACTIVE GRAPHICS

PGOLIN allows the user to specify a set of points within the viewport,
with the capability of correcting mistakes. Interactive commands (single
characters [A, D, or X] typed on the keyboard) allow the user to add a point
at the current cursor position, delete the last-entered point, or ezxit from
the subroutine. The world-coordinates of the entered points are returned to
the calling program. The following program fragment illustrates the use of
PGOLIN; the user supplies NPT (up to 50) points with world-coordinates X()
and Y(), and the program then shades the polygon defined by these points
by calling PGPOLY:

INTEGER NPT
REAL X(50), Y(50)

WRITE (6,*) ’Use the cursor to draw a polygon’

WRITE (6,%) ’Type A to add point, D to delete, X to exit’
NPT = O

CALL PGOLIN (50, NPT, X, Y, 0)

IF (NPT.GE.3) CALL PGPOLY (NPT, X, Y)

PGNCURSE is similar to PGOLIN, but the points are sorted into increasing
order of z before being returned to the calling program. In addition, the
delete command deletes the point nearest to the cursor, rather than the
last-entered point. It can be used, for example, to allow the user to supply
a set of points to represent the continuum level on a spectrum.

PGLCUR is similar to PGOLIN but instead of using a graph marker to mark
each entered point it draws a polyline through them.

7.4 Buffering

By default, PGPLOT ensures that the image seen on the view surface is
up to date at all times; that is, each PGPLOT subroutine updates the
image before returning control to the calling program. To improve efficiency,
PGPLOT can save instructions for controlling the graphics device in a buffer,
and only send them to the device when the buffer is filled up. This means
that at any given moment, the image displayed on the screen may not be
completely up to date. This can be a problem in an interactive program,
where, for example, the user has to tell the program what to do next based on
his interpretation of the current display. Three PGPLOT routines (PGBBUF,
PGEBUF, and PGUPDT) are provided for controlling the buffering of output.
All three routines have no arguments.

The routine PGBBUF causes PGPLOT to begin saving graphical output
in a buffer. The output is saved until (1) a matching PGEBUF call is made,
or (2) the buffer fills up, or (3) the buffer is emptied by a call to PGUPDT,

INTERACTIVE GRAPHICS 7-3

or (4) PGEND is called. The routine PGEBUF stops buffering and causes the
buffered commands to be sent to the output device. Calls to PGBBUF and
PGEBUF should always be paired. PGBBUF increments an internal counter,
while PGEBUF decrements this counter and flushes the buffer to the output
device when the counter drops to zero. This allows a subroutine to turn on
and turn off buffering without disturbing any buffering that may have been
established by the calling program.

Routine PGUPDT empties the buffer created by PGBBUF, but it does not
alter the internal counter. The routine should be called when it is essential
that the display be completely up-to-date (before interaction with the user,
for example) but it is not known if output is being buffered.

Usually output is not buffered; this is the default state established by
PGBEGIN. The default behavior can be changed, however, by defining an
environment variable PGPLOT_BUFFER (see Chapter 1). If this variable is
defined, with any value, PGBEGIN will start buffering output (by calling
PGBBUF).

The following example shows how routine PGLABEL might be imple-
mented in terms of routine PGMTEXT:

SUBROUTINE PGLABEL (XLBL, YLBL, TOPLBL)
CHARACTER* (*) XLBL, YLBL, TOPLBL
CALL PGBBUF

CALL PGMTEXT(’T’, 2.0, 0.5, 0.5, TOPLBL)
CALL PGMTEXT(’B’, 3.2, 0.5, 0.5, XLBL)
CALL PGMTEXT(’L’, 2.2, 0.5, 0.5, YLBL)

CALL PGEBUF
END

The calls to PGBBUF and PGEBUF ensure that the output generated by the
three calls to PGMTEXT is buffered (i.e., sent to the output device as a single
command instead of three separate ones). If buffering is already enabled by
the program which calls PGLABEL, the calls to PGBBUF and PGEBUF have no
effect.

Chapter 8

METAFILES

8.1 Introduction

A graphics melafile is a disk file in which a device-independent represen-
tation of a graphics image can be stored. Such a file cannot be displayed
directly on a graphics device, but must first be translated into the com-
mands appropriate for the specific device using a metafile translator. This
may seem like an unnecessary complication, when PGPLOT can create the
device-specific commands directly, but it has some advantages. Metafiles
can be used, for example, to transfer pictures between two computing sites
(they are usually smaller than the corresponding device-specific files) or for
archiving pictures. It is sometimes convenient to make a program generate
a metafile rather than a device-specific file so that one can, for example,
take a “quick look” at the picture on an interactive display before making
hard copies. One may not know what hard-copy devices will be available
when the program runs: for example, if it turns out after your 6-hour batch
job has finished that the Versatec printer has broken, it is nice to be able to
send the plot to some other device without re-running the batch job.

The metafiles generated by PGPLOT follow the “GSPC Metafile Pro-
posal” described in Computer Graphics (A. C. M.), volume 13, number 3
(August 1979).

At present, metafiles are available only in the VMS version of PGPLOT,
not in the UNIX versions.

8.2 Creating Metafiles

Metafiles may be created using PGPLOT in the same way that any other
plot file is created: the device specification consists of a disk file name
and a device type /FILE, for example PLOT17.GMF/FILE. The default file
type if none is specified is .GMF (for Graphics Meta File). Programs which
might generate metafile output should not make any assumptions about the
physical scale of the picture; the scale will vary depending on what device
the picture is ultimately plotted on.

8-2 METAFILES

8.3 Translating Metafiles

In order to generate graphics output from a metafile, one must use a Metafile
Translator to interpret the device independent metafile commands. The
Metafile Translator (GMFPLOT) provided with PGPLOT uses the PG-
PLOT subroutines to generate the device-specific output: thus a metafile
may be displayed on any of the devices supported by PGPLOT. (A metafile
may even be translated into another metafile, but this is not very useful.) To
use GMFPLOT, first define a command PLOT, say, as follows; this definition
may be included in your LOGIN.COM file if you make extensive use of it:

$ PLOT == "$PGPLOT_DIR:GMFPLOT"

The PLOT command takes two arguments: the name of the input metafile,
and the device specification for the output. The following sample commands
display a metafile on a Grinnell and on a Versatec printer:

$ PLOT PLOT17.GMF /GR
$ PLOT PLOT17 DEIMOS::LVAO:/VE

Again, the default file type for the metafile is .GMF.

At present, it is not possible to edit the metafile before display. This is
a facility which might be added one day. Nor is it possible to change the
scale or aspect ratio (ratio of height/width of the display surface). When
PGPLOT generates a metafile, it does not know the size or shape of the
display surface that it will ultimately be plotted on; as it has to make
some assumption, it assumes that the surface will be square. The metafile
translator displays the metafile in the largest square available on the output
device. Thus a plot which is sent directly to a terminal may not look exactly
the same as one that is stored in a metafile and subsequently displayed on
the terminal. Future enhancements may allow one to specify the scale and
aspect ratio of the metafile when it is generated.

Appendix A

SUBROUTINE DESCRIPTIONS

A.1 Introduction

This appendix includes a classified list of all the PGPLOT subroutines,
and then gives detailed instructions for the use of each routine in Fortran
programs. The subroutine descriptions are in alphabetical order.

A.2 Arguments

The subroutine descriptions indicate the data type of each argument. When
arguments are described as “input”, they may be replaced with constants
or expressions in the CALL statement, but make sure that the constant or
expression has the correct data type.

1. INTEGER arguments: these should be declared INTEGER or INTEGER*4 in
the calling program, not INTEGER*2.

2. REAL arguments: these should be declared REAL or REAL*4 in the calling
program, not REAL*8 or DOUBLE PRECISION.

3. CHARACTER arguments: any valid Fortran CHARACTER variable may be
used (declared CHARACTER#*n for some integer n).

A.3 Classified List

Note: all routine names begin with the letters “PG”. Most (but unfor-
tunately not all) routine names are six characters or less, to conform to
Fortran-77 standards.

A-2 SUBROUTINE DESCRIPTIONS

Control routines

PGADVANCE - see PGPAGE

PGASK - control new page prompting

PGBBUF — begin batch of output (buffer)
PGBEGIN - begin PGPLOT, open output device
PGEBUF - end batch of output (buffer)

PGEND — terminate PGPLOT

PGPAGE — advance to a new page or clear screen
PGPAPER — change the size of the view surface
PGUPDT - update display

Windows and viewports

PGBOX — draw labeled frame around viewport

PGENV — set window and viewport and draw labeled frame
PGVPORT - set viewport (normalized device coordinates)
PGVSIZE — set viewport (inches)

PGVSTAND - set standard (default) viewport
PGWINDOW - set window

PGWNAD - set window and adjust viewport to same aspect ratio

Primitive drawing routines

PGDRAW - draw a line from the current pen position to a point
PGLINE - draw a polyline (curve defined by line-segments)
PGMOVE — move pen (change current pen position)

PGPOINT — draw one or more graph markers

PGPOLY — fill a polygonal area with shading

PGRECT — draw a rectangle, using fill-area attributes

Text
PGLABEL — write labels for x-axis, y-axis, and top of plot
PGMTEXT — write text at position relative to viewport

PGPTEXT — write text at arbitrary position and angle
PGTEXT — write text (horizontal, left-justified)

SUBROUTINE DESCRIPTIONS

Attribute setting

PGSCF — set character font

PGSCH — set character height

PGSCI - set color index

PGSCR - set color representation

PGSFS — set fill-area style

PGSHLS — set color representation using HLS system
PGSLS — set line style

PGSLW - set line width

Higher-level drawing routines

PGBIN - histogram of binned data

PGCONS — contour map of a 2D data array (fast algorithm)
PGCONT - contour map of a 2D data array (contour-following)
PGCONX — contour map of a 2D data array (non-rectangular)
PGERRX - horizontal error bar

PGERRY - vertical error bar

PGFUNT — function defined by X = F(T), Y = G(T)
PGFUNX - function defined by Y = F(X)

PGFUNY - function defined by X = F(Y)

PGGRAY - gray-scale map of a 2D data array

PGHI2D — cross-sections through a 2D data array

PGHIST - histogram of unbinned data

Interactive graphics (cursor)

PGCURSE - read cursor position

PGLCUR — draw a line using the cursor
PGNCURSE — mark a set of points using the cursor
PGOLIN — mark a set of points using the cursor

A-4 SUBROUTINE DESCRIPTIONS

Inquiry routines

PGQCF — inquire character font

PGQCH - inquire character height

PGQCI - inquire color index

PGQCR - inquire color representation

PGQFS — inquire fill-area style

PGQINF — inquire PGPLOT general information
PGQLS - inquire line style

PGQLW — inquire line width

PGQVP — inquire viewport size and position

PGQWIN - inquire window boundary coordinates

Utility routines

PGETXT — erase text from graphics display

PGIDEN — write username, date, and time at bottom of plot
PGLDEV - list available device types

PGNUMB — convert a number into a plottable character string
PGRND - find the smallest “round” number greater than x
PGRNGE - choose axis limits

A.4 Subroutine Synopses

The following pages give descriptions of all the PGPLOT subroutines in
alphabetical order. These descriptions have been extracted from comments
in the Fortran source code. (For an up-to-date version of these decriptions,
look at the file PGPLOT.DOC in the PGPLOT directory.)

SUBROUTINE DESCRIPTIONS

A.5 PGADVANCE - non-standard alias for PGPAGE

SUBROUTINE PGADVANCE

A.6 PGASK - control new page prompting

SUBROUTINE PGASK (FLAG)
LOGICAL FLAG
Change the "prompt state' of PGPLOT. If the prompt state is
ON, PGPAGE will type "Type <RETURN> for next page:'" and will wait
for the user to type <CR> before starting a new page. The initial
prompt state (after a call to PGBEG) is ON for interactive devices.
Prompt state is always OFF for non-interactive devices.
Arguments:
FLAG (input) : if .TRUE., and if the device is an interactive
device, the prompt state will be set to ON. If
.FALSE., the prompt state will be set to OFF.

A.7 PGBBUF - begin batch of output (buffer)

SUBROUTINE PGBBUF
Begin saving graphical output commands in an internal buffer; the
commands are held until a matching PGEBUF call (or until the buffer
is emptied by PGUPDT). This can greatly improve the efficiency of
PGPLOT. PGBBUF increments an internal counter, while PGEBUF
decrements this counter and flushes the buffer to the output
device when the counter drops to zero. PGBBUF and PGEBUF calls
should always be paired.
Arguments: none

A-6 SUBROUTINE DESCRIPTIONS

A.8 PGBEG - begin PGPLOT, open output device

INTEGER FUNCTION PGBEG (UNIT, FILE, NXSUB, NYSUB)
INTEGER UNIT

CHARACTER*(*) FILE

INTEGER NXSUB, NYSUB

Begin PGPLOT, open the plot file. A call to PGBEG is

required before any other calls to PGPLOT subroutines. If a plot
file is already open for PGPLOT output, it is closed before the new
file is opened.

Returns:

PGBEG a status return value. A value of 1 indicates
successful completion, any other value indicates
an error. In the event of error a message is
written on the standard error unit.

To test the return value, call
PGBEG as a function, eg IER=PGBEG(...); note
that PGBEG must be declared INTEGER in the
calling program.

Arguments:

UNIT (input) : this argument is ignored by PGBEG (use zero).

FILE (input) : the 'device specification'" for the plot device.
Device specifications are installation dependent,
but usually have the form "device/type" or
"file/type". If this argument is a
question mark (’7’), PGBEG will prompt the user
to supply a string.

NXSUB (input) : the number of subdivisions of the view surface in
X.

NYSUB (input) : the number of subdivisions of the view surface in

Y. PGPLOT puts NXSUB x NYSUB graphs on each plot
page or screen; when the view surface is sub-
divided in this way, PGPAGE moves to the next
sub-page, not the next physical page.

A.9 PGBEGIN - non-standard alias for PGBEG

INTEGER FUNCTION PGBEGIN (UNIT, FILE, NXSUB, NYSUB)
INTEGER UNIT

CHARACTER*(*) FILE

INTEGER NXSUB, NYSUB

SUBROUTINE DESCRIPTIONS A-7

A.10 PGBIN - histogram of binned data

SUBROUTINE PGBIN (NBIN, X, DATA, CENTER)

INTEGER NBIN

REAL X(*), DATA(*)

LOGICAL CENTER
Plot a histogram of NBIN values with X(1..NBIN) values along
the ordinate, and DATA(1...HNBIN) along the abscissa. Bin width is
spacing between X values.

Arguments:
NBIN (input)
X (input)

DATA (input)
CENTER (input)

: number of values.
: abscissae of bins.
: data values of bins.

if .TRUE., the X values denote the center of the
bin; if .FALSE., the X values denote the lower
edge (in X) of the bin.

A-8 SUBROUTINE DESCRIPTIONS

A.11 PGBOX - draw labeled frame around viewport

SUBROUTINE PGBOX (XOPT, XTICK, NXSUB, YOPT, YTICK, NYSUB)
CHARACTER*(*) XOPT, YOPT
REAL XTICK, YTICK
INTEGER NXSUB, NYSUB
Annotate the viewport with frame, axes, numeric labels, etc.
PGBOX is called by on the user’s behalf by PGENV, but may also be
called explicitly.
Arguments:

XOPT (input) : string of options for X (horizontal) axis of
plot. Options are single letters, and may be in
any order (see below).

XTICK (input) : world coordinate interval between major tick marks
on X axis. If XTICK=0.0, the interval is chosen by
PGBOX, so that there will be at least 3 major tick
marks along the axis.

NXSUB (input) : the number of subintervals to divide the major
coordinate interval into. If XTICK=0.0 or NXSUB=0,
the number is chosen by PGBOX.

YOPT (input) : string of options for Y (vertical) axis of plot.
Coding is the same as for XOPT.

YTICK (input) : like XTICK for the Y axis.

NYSUB (input) : like NXSUB for the Y axis.

Options (for parameters XOPT and YOPT):

A : draw Axis (X axis is horizontal line Y=0, Y axis is vertical
line X=0).

: draw bottom (X) or left (Y) edge of frame.

: draw top (X) or right (Y) edge of frame.

: draw Grid of vertical (X) or horizontal (Y) lines.

Invert the tick marks; ie draw them outside the viewport

instead of inside.

: label axis Logarithmically (see below).

N : write Numeric labels in the conventional location below the

viewport (X) or to the left of the viewport (Y).

P : extend ("Project'") major tick marks outside the box (ignored if

option I is specified).

M : write numeric labels in the unconventional location above the

viewport (X) or to the right of the viewport (Y).

T : draw major Tick marks at the major coordinate interval.

S : draw minor tick marks (Subticks).

V : orient numeric labels Vertically. This is only applicable to Y.

The default is to write Y-labels parallel to the axis
To get a complete frame, specify BC in both XOPT and YOPT.
Tick marks, if requested, are drawn on the axes or frame
or both, depending which are requested. If none of ABC is specified,
tick marks will not be drawn. When PGENV calls PGBOX, it sets both
XOPT and YOPT according to the value of its parameter AXIS:
-1: ’BC’, O: ’BCNST’, 1: ’ABCNST’, 2: ’ABCGNST’.
For a logarithmic axis, the major tick interval is always 1.0. The
numeric label is 10**(x) where x is the world coordinate at the
tick mark. If subticks are requested, 8 subticks are drawn between
each major tick at equal logarithmic intervals.

HQQmE

=

SUBROUTINE DESCRIPTIONS A-9

A.12 PGCONB - contour map of a 2D data array, with blanking

SUBROUTINE PGCONB (A, IDIM, JDIM, I1, I2, Ji, J2, C, NC, TR,

1

BLANK)

INTEGER IDIM, JDIM, I1, I2, J1, J2, NC

REAL A(IDIM,JDIM), C(*), TR(6), BLANK
Draw a contour map of an array. This routine is the same as PGCONS,
except that array elements that have the "magic value" defined by
argument BLANK are ignored, making gaps in the contour map. The
routine may be useful for data measured on most but not all of the

points of a grid.

Arguments:
A (input)
IDIM (input)
JDIM (input)
11,12 (input)
J1,J2 (input)

C (input)
(o (input)
TR (input)

BLANK (input)

: data array.
: first dimension of A.

second dimension of A.

range of first index to be contoured (inclusive).
range of second index to be contoured (inclusive).
array of contour levels (in the same units as the
data in array A); dimension at least HC.

: number of contour levels (less than or equal to

dimension of C). The absolute value of this
argument is used (for compatibility with PGCONT,
where the sign of NC is significant).
array defining a transformation between the I,J
grid of the array and the world coordinates. The
world coordinates of the array point A(I,J) are
given by:

X = TR(1) + TR(2)*I + TR(3)*J

Y = TR(4) + TR(5)*I + TR(6)*J
Usually TR(3) and TR(5) are zero - unless the
coordinate transformation involves a rotation
or shear.
elements of array A that are exactly equal to
this value are ignored (blanked).

A-10 SUBROUTINE DESCRIPTIONS

A.13 PGCONS - contour map of a 2D data array (fast algorithm)

SUBROUTINE PGCONS (A, IDIM, JDIM, I1, I2, Ji, J2, C, NC, TR)

INTEGER IDIM, JDIM, I1, I2, J1, J2, NC

REAL A(IDIM,JDIM), C(*), TR(6)
Draw a contour map of an array. The map is truncated if
necessary at the boundaries of the viewport. Each contour line is
drawn with the current line attributes (color index, style, and
width). This routine, unlike PGCONT, does not draw each contour as a
continuous line, but draws the straight line segments composing each
contour in a random order. It is thus not suitable for use on pen
plotters, and it usually gives unsatisfactory results with dashed or
dotted lines. It is, however, faster than PGCONT, especially if
several contour levels are drawn with one call of PGCONS.

Arguments:

A (input) : data array.

IDIM (input) : first dimension of A.

JDIM (input) : second dimension of A.

I1,I2 (input) : range of first index to be contoured (inclusive).
J1,J2 (input) : range of second index to be contoured (inclusive).
c (input) : array of contour levels (in the same units as the

data in array A); dimension at least HNC.
Ji[¢ (input) : number of contour levels (less than or equal to

dimension of C). The absolute value of this
argument is used (for compatibility with PGCONT,
where the sign of NC is significant).

TR (input) : array defining a transformation between the I,J
grid of the array and the world coordinates. The
world coordinates of the array point A(I,J) are
given by:

X = TR(1) + TR(2)*I + TR(3)*J

Y = TR(4) + TR(5)*I + TR(6)*J
Usually TR(3) and TR(5) are zero - unless the
coordinate transformation involves a rotation
or shear.

SUBROUTINE DESCRIPTIONS A-11

A.14 PGCONT - contour map of a 2D data array (contour-following)

SUBROUTINE PGCONT (A, IDIM, JDIM, I1, I2, Ji, J2, C, NC, TR)
INTEGER IDIM, JDIM, Ii, J1, I2, J2, NC
REAL A(IDIM,JDIM), C(*), TR(6)
Draw a contour map of an array. The map is truncated if
necessary at the boundaries of the viewport. Each contour line
is drawn with the current line attributes (color index, style, and
width); except that if argument NC is positive (see below), the line
style is set by PGCONT to 1 (solid) for positive contours or 2
(dashed) for negative contours.
Arguments:
A (input) : data array.
IDIM (input) : first dimension of A.
JDIM (input) : second dimension of A.
I1, I2 (input) : range of first index to be contoured (inclusive).
J1, J2 (input) : range of second index to be contoured (inclusive).
C (input) : array of NC contour levels; dimension at least NC.
[(input) : +/- number of contour levels (less than or equal
to dimension of C). If NC is positive, it is the
number of contour levels, and the line-style is
chosen automatically as described above. If NC is
negative, it is minus the number of contour
levels, and the current setting of line-style is
used for all the contours.
TR (input) : array defining a transformation between the I,J
grid of the array and the world coordinates.
The world coordinates of the array point A(I,J)
are given by:
X = TR(1) + TR(2)*I + TR(3)*J
Y = TR(4) + TR(5)*I + TR(6)*J
Usually TR(3) and TR(5) are zero - unless the
coordinate transformation involves a rotation or
shear.

A-12 SUBROUTINE DESCRIPTIONS

A.15 PGCONX - contour map of a 2D data array (non-rectangular)

SUBROUTINE PGCONX (A, IDIM, JDIM, I1, I2, Ji, J2, C, HC, PLOT)

INTEGER IDIM, JDIM, I1, Ji, I2, J2, NC

REAL A(IDIM,JDIM), C(%*)

EXTERNAL PLOT
Draw a contour map of an array using a user-supplied plotting
routine. This routine should be used instead of PGCONT when the
data are defined on a non-rectangular grid. PGCONT permits only
a linear transformation between the (I,J) grid of the array
and the world coordinate system (x,y), but PGCONX permits any
transformation to be used, the transformation being defined by a
user-supplied subroutine. The nature of the contouring algorithm,
however, dictates that the transformation should maintain the
rectangular topology of the grid, although grid-points may be
allowed to coalesce. As an example of a deformed rectangular
grid, consider data given on the polar grid theta=0.1n(pi/2),
for n=0,1,...,10, and r=0.25m, for m=0,1,..,4. This grid
contains 55 points, of which 11 are coincident at the origin.
The input array for PGCONX should be dimensioned (11,5), and
data values should be provided for all 55 elements. PGCONX can
also be used for special applications in which the height of the
contour affects its appearance, e.g., stereoscopic views.
The map is truncated if necessary at the boundaries of the viewport.
Each contour line is drawn with the current line attributes (color
index, style, and width); except that if argument NC is positive
(see below), the line style is set by PGCONX to 1 (solid) for
positive contours or 2 (dashed) for negative contours. Attributes
for the contour lines can also be set in the user-supplied
subroutine, if desired.
Arguments:

A (input) : data array.

IDIM (input) : first dimension of A.

JDIM (input) : second dimension of A.

I1, I2 (input) : range of first index to be contoured (inclusive).

J1, J2 (input) : range of second index to be contoured (inclusive).

C (input) : array of NC contour levels; dimension at least NC.

[(input) : +/- number of contour levels (less than or equal
to dimension of C). If NC is positive, it is the
number of contour levels, and the line-style is
chosen automatically as described above. If NC is
negative, it is minus the number of contour
levels, and the current setting of line-style is
used for all the contours.

PLOT (input) : the address (name) of a subroutine supplied by
the user, which will be called by PGCONX to do
the actual plotting. This must be declared
EXTERNAL in the program unit calling PGCONX.

The subroutine PLOT will be called with four arguments:
CALL PLOT(VISBLE,X,Y,Z)
where X,Y (input) are real variables corresponding to
I,J indices of the array A. If VISBLE (input, integer) is 1,
PLOT should draw a visible line from the current pen
position to the world coordinate point corresponding to (X,Y);
if it is O, it should move the pen to (X,Y). Z is the value
of the current contour level, and may be used by PLOT if desired.
Example:
SUBROUTINE PLOT (VISBLE,X,Y,Z)
REAL X, Y, Z, XWORLD, YWORLD
INTEGER VISBLE
XWORLD = X*COS(Y) ! this is the user-defined
YWORLD = X*SIN(Y) ! transformation
IF (VISBLE.EQ.O) THEN
CALL PGMOVE (XWORLD, YWORLD)
ELSE
CALL PGDRAW (XWORLD, YWORLD)
END IF
END

SUBROUTINE DESCRIPTIONS A-13

A.16 PGCURS - read cursor position

INTEGER FUNCTION PGCURS (X, Y, CH)

REAL X, Y

CHARACTER*1 CH
Read the cursor position and a character typed by the user.
The position is returned in world coordinates. PGCURS positions
the cursor at the position specified, allows the user to move the
cursor using the joystick or arrow keys or whatever is available on
the device. When he has positioned the cursor, the user types a
single character on the keyboard; PGCURS then returns this
character and the new cursor position (in world coordinates).

Returns:
PGCURS : 1 if the call was successful; O if the device
has no cursor or some other error occurs.
Arguments:
X (in/out) : the world x-coordinate of the cursor.
Y (in/out) : the world y-coordinate of the cursor.
CH (output) : the character typed by the user; if the device has

no cursor or if some other error occurs, the value
CHAR(O) [ASCII NUL character] is returned.
Note: The cursor coordinates (X,Y) may be changed by PGCURS even if
the device has no cursor or if the user does not move the cursor.
Under these circumstances, the position returned in (X,Y) is that of
the pixel nearest to the requested position.

A.17 PGCURSE — non-standard alias for PGCURS

INTEGER FUNCTION PGCURSE (X, Y, CH)
REAL X, Y
CHARACTER*1 CH

A.18 PGDRAW - draw a line from the current pen position to a point

SUBROUTINE PGDRAW (X, Y)

REAL X, Y
Draw a line from the current pen position to the point
with world-coordinates (X,Y). The line is clipped at the edge of the
current window. The new pen position is (X,Y) in world coordinates.
Arguments:
X (input) : world x-coordinate of the end point of the line.
Y (input) : world y-coordinate of the end point of the line.

A-14 SUBROUTINE DESCRIPTIONS

A.19 PGEBUF - end batch of output (buffer)

SUBROUTINE PGEBUF
A call to PGEBUF marks the end of a batch of graphical output begun
with the last call of PGBBUF. PGBBUF and PGEBUF calls should always
be paired. Each call to PGBBUF increments a counter, while each call
to PGEBUF decrements the counter. When the counter reaches 0, the
batch of output is written on the output device.
Arguments: none

A.20 PGEND - terminate PGPLOT

SUBROUTINE PGEND
Terminate PGPLOT, close the plot file, release the graphics
device. If the call to PGEND is omitted, some or all of the plot
may be lost. If the environment parameter PGPLOT_IDENT is defined
(with any value), and the device is a hardcopy device, an
identifying label is written on the plot (by calling PGIDEN: q.v.).
Arguments: none

SUBROUTINE DESCRIPTIONS A-15

A.21 PGENYV - set window and viewport and draw labeled frame

SUBROUTINE PGENV (XMIN, XMAX, YMIN, YMAX, JUST, AXIS)

REAL XMIN, XMAX, YMIN, YMAX

INTEGER JUST, AXIS
Set PGPLOT "Plotter Environment'. PGENV establishes the scaling
for subsequent calls to PGPT, PGLINE, etc. The plotter is
advanced to a new (sub-)page, clearing the screen if necessary.
If the "prompt state" is ON (see PGASK), confirmation
is requested from the user before clearing the screen.
If requested, a box, axes, labels, etc. are drawn according to
the setting of argument AXIS.

Arguments:

XMIN (input) : the world x-coordinate at the bottom left corner
of the viewport.

XMAX (input) : the world x-coordinate at the top right corner
of the viewport (note XMAX may be less than XMIN).

YMIN (input) : the world y-coordinate at the bottom left corner
of the viewport.

YMAX (input) : the world y-coordinate at the top right corner

of the viewport (note YMAX may be less than YMIN).
JUST (input) : if JUST=1, the scales of the x and y axes (in
world coordinates per inch) will be equal,
otherwise they will be scaled independently.
AXIS (input) : controls the plotting of axes, tick marks, etc:
AXIS -2 : draw no box, axes or labels;
AXIS = -1 : draw box only;
AXIS = O : draw box and label it with coordinates;
AXIS = 1 : same as AXIS=0, but also draw the
coordinate axes (X=0, Y=0);
AXIS = 2 : same as AXIS=1, but also draw grid lines
at major increments of the coordinates;
AXIS = 10 : draw box and label X-axis logarithmically;
AXIS = 20 : draw box and label Y-axis logarithmically;
AXIS = 30 : draw box and label both axes logarithmically.
For other axis options, use routine PGBOX. PGENV can be pursuaded to
call PGBOX with additional axis options by defining an environment
parameter PGPLOT_ENVOPT containing the required option codes.

Examples:
PGPLOT_ENVOPT=P ! draw Projecting tick marks
PGPLOT_ENVOPT=I ! Invert the tick marks

PGPLOT_ENVOPT=IV ! Invert tick marks and label y Vertically

A-16 SUBROUTINE DESCRIPTIONS

A.22 PGERRB - horizontal error bar

SUBROUTINE PGERRB (DIR, N, X, Y, E, T)
INTEGER DIR, N
REAL X(*), Y(*), E(%)
REAL T
Plot error bars in the direction specified by DIR.
This routine draws an error bar only; to mark the data point at
the start of the error bar, an additional call to PGPT is required.

Arguments:

DIR (input) : direction to plot the error bar relative to
the data point. DIR is 1 for +X; 2 for +Y;
3 for -X; and 4 for -Y;

i (input) : number of error bars to plot.

X (input) : world x-coordinates of the data.

Y (input) : world y-coordinates of the data.

E (input) : value of error bar distance to be added to the
data position in world coordinates.

T (input) : length of terminals to be drawn at the ends

of the error bar, as a multiple of the default
length; if T = 0.0, no terminals will be drawn.
Note: the dimension of arrays X, Y, and E must be greater
than or equal to N. If N is 1, X, Y, and E may be scalar
variables, or expressions.

A.23 PGERRX - horizontal error bar

SUBROUTINE PGERRX (N, X1, X2, Y, T)

INTEGER N

REAL X1(*), X2(*), Y(*)

REAL T
Plot horizontal error bars.
This routine draws an error bar only; to mark the data point in
the middle of the error bar, an additional call to PGPT or
PGERRY is required.

Arguments:

i (input) : number of error bars to plot.

X1 (input) : world x-coordinates of lower end of the
error bars.

X2 (input) : world x-coordinates of upper end of the
error bars.

Y (input) : world y-coordinates of the data.

T (input) : length of terminals to be drawn at the ends

of the error bar, as a multiple of the default
length; if T = 0.0, no terminals will be drawn.
Note: the dimension of arrays X1, X2, and Y must be greater
than or equal to N. If N is 1, X1, X2, and Y may be scalar
variables, or expressions, eg:
CALL PGERRX(1,X-SIGMA,X+SIGMA,Y)

SUBROUTINE DESCRIPTIONS

A.24 PGERRY - vertical error bar

SUBROUTINE PGERRY (N, X, Y1, Y2, T)
Plot vertical error bars.
This routine draws an error bar only; to mark the data point in
the middle of the error bar, an additional call to PGPT or

PGERRX is required.

Arguments:

i} (input)
X (input)
Y1 (input)
Y2 (input)
T (input)

: number of error bars to plot.
: world x-coordinates of the data.
: world y-coordinates of top end of the

error bars.

: world y-coordinates of bottom end of the

error bars.

length of terminals to be drawn at the ends

of the error bar, as a multiple of the default
length; if T = 0.0, no terminals will be drawn.

Note: the dimension of arrays X, Y1, and Y2 must be greater
than or equal to N. If N is 1, X, Y1, and Y2 may be scalar
variables or expressions, eg:

CALL PGERRY(1,X,Y+SIGMA,Y-SIGMA)

A.25 PGETXT - erase text from graphics display

SUBROUTINE PGETXT
Some graphics terminals display text (the normal interactive dialog)
on the same screen as graphics. This routine erases the text from the
view surface without affecting the graphics. It does nothing on
devices which do not display text on the graphics screen, and on
devices which do not have this capability.

Arguments:
None

A-18 SUBROUTINE DESCRIPTIONS

A.26 PGFUNT - function defined by X = F(T), Y = G(T)

SUBROUTINE PGFUNT (FX, FY, N, TMIN, TMAX, PGFLAG)
REAL FX, FY
INTEGER N
REAL TMIN, TMAX
INTEGER PGFLAG
Draw a curve defined by parametric equations X = FX(T), Y = FY(T).

Arguments:

FX (external real function): supplied by the user, evaluates
X-coordinate.

FY (external real function): supplied by the user, evaluates
Y-coordinate.

i (input) : the number of points required to define the
curve. The functions FX and FY will each be
called N+1 times.

TMIN (input) : the minimum value for the parameter T.

TMAX (input) : the maximum value for the parameter T.

PGFLAG (input) : if PGFLAG = 1, the curve is plotted in the
current window and viewport; if PGFLAG = O,
PGENV is called automatically by PGFUNT to
start a new plot with automatic scaling.
Note: The functions FX and FY must be declared EXTERNAL in the
Fortran program unit that calls PGFUNT.

A.27 PGFUNX - function defined by Y = F(X)

SUBROUTINE PGFUNX (FY, N, XMIN, XMAX, PGFLAG)

REAL FY

INTEGER N

REAL XMIN, XMAX

INTEGER PGFLAG
Draw a curve defined by the equation Y = FY(X), where FY is a
user-supplied subroutine.

Arguments:

FY (external real function): supplied by the user, evaluates
Y value at a given X-coordinate.

i (input) : the number of points required to define the
curve. The function FY will be called N+1 times.
If PGFLAG=0 and N is greater than 1000, 1000
will be used instead. If N is less than 1,
nothing will be drawn.

XMIN (input) : the minimum value of X.

XMAX (input) : the maximum value of X.

PGFLAG (input) : if PGFLAG = 1, the curve is plotted in the
current window and viewport; if PGFLAG = O,
PGENV is called automatically by PGFUNX to
start a new plot with X limits (XMIN, XMAX)
and automatic scaling in Y.
Note: The function FY must be declared EXTERNAL in the Fortran
program unit that calls PGFUNX. It has one argument, the
x-coordinate at which the y value is required, e.g.
REAL FUNCTION FY(X)
REAL X
FY =
END

SUBROUTINE DESCRIPTIONS

A.28 PGFUNY - function defined by X = F(Y)

SUBROUTINE PGFUNY (FX, N, YMIN, YMAX, PGFLAG)

REAL FX
INTEGER N

REAL YMIN, YMAX

INTEGER PGFLAG
Draw a curve defined by the equation X = FX(Y), where FY is a
user-supplied subroutine.

Arguments:

FX (external real function): supplied by the user, evaluates
X value at a given Y-coordinate.

i (input) : the number of points required to define the

YMIN (input)
YMAX (input)
PGFLAG (input)

curve. The function FX will be called N+1 times.
If PGFLAG=0 and N is greater than 1000, 1000
will be used instead. If N is less than 1,
nothing will be drawn.

: the minimum value of Y.
: the maximum value of Y.

if PGFLAG = 1, the curve is plotted in the
current window and viewport; if PGFLAG = O,
PGENV is called automatically by PGFUNY to
start a new plot with Y limits (YMIN, YMAX)
and automatic scaling in X.

Note: The function FX must be declared EXTERNAL in the Fortran
program unit that calls PGFUNY. It has one argument, the
y-coordinate at which the x value is required, e.g.

REAL FUNCTION FX(Y)

REAL Y
FX =
END

A-20 SUBROUTINE DESCRIPTIONS

A.29 PGGRAY - gray-scale map of a 2D data array

SUBROUTINE PGGRAY (A, IDIM, JDIM, I1, I2, Ji, J2,

1 FG, BG, TR)

INTEGER IDIM, JDIM, I1, I2, J1, J2

REAL A(IDIM,JDIM)

REAL FG, BG

REAL TR(6)
Draw gray-scale map of an array in current window. The subsection
of the array A defined by indices (I1:I2, J1:J2) is mapped onto
the view surface world-coordinate system by the transformation
matrix TR. The resulting quadrilateral region is clipped at the edge
of the window and shaded with the shade at each point determined
by the corresponding array value. The shade is a number in the
range O to 1 obtained by linear interpolation between the background
level (BG) and the foreground level (FG), i.e.,

shade = [A(i,j) - BG] / [FG - BG]
The background level BG can be either less than or greater than the
foreground level FG. Points in the array that are outside the range
BG to FG are assigned shade O or 1 as appropriate.
The algorithm used by PGGRAY is device-dependent. On devices
that have only two color indices (0 and 1), the background color
is the color assigned to color index O, the foreground color
is the color assigned to color index 1, and PGGRAY uses a
"dithering" algorithm to fill in pixels in the two colors, with
the shade (computed as above) determining the faction of pixels
that are assigned color index 1.
On devices that have more than 16 color indices, PGGRAY may use
color indices outside the range 0-15 to provide more than two
gray shades. Note that PGGRAY may change the color representation
of these color indices, but it will not change the representation
of indices 0-15.
On most devices, the shaded region is 'opaque', i.e., it obscures
all graphical elements previously drawn in the region. But on
devices that do not have erase capability, the background shade
is "transparent' and allows previously-drawn graphics to show
through.
The transformation matrix TR is used to calculate the world
coordinates of the center of the '"cell" that represents each
array element. The world coordinates of the center of the cell
corresponding to array element A(I,J) are given by:
X = TR(1) + TR(2)*I + TR(3)*J
Y = TR(4) + TR(5)*I + TR(6)*J

Usually TR(3) and TR(5) are zero -- unless the coordinate
transformation involves a rotation or shear. The corners of the
quadrilateral region that is shaded by PGGRAY are given by
applying this transformation to (I1-0.5,J1-0.5), (I2+0.5, J2+0.5).

Arguments:
A (input) : the array to be plotted.
IDIM (input) : the first dimension of array A.
JDIM (input) : the second dimension of array A.
I1, I2 (input) : the inclusive range of the first index
(I) to be plotted.
J1, J2 (input) : the inclusive range of the second
index (J) to be plotted.
FG (input) : the array value which is to appear with shade
1 ("foreground").
BG (input) : the array value which is to appear with shade
0 ("background").
TR (input) : transformation matrix between array grid and

world coordinates.

SUBROUTINE DESCRIPTIONS

A.30 PGHI2D - cross-sections through a 2D data array

SUBROUTINE PGHI2D (DATA, NXV, NYV, IX1, IX2, IYi, IY2, X, IOFF,

1

BIAS, CENTER, YLIMS)

INTEGER NXV, NYV, IX1, IX2, IY1, IY2

REAL
REAL

REAL

DATA (HXV,HYV)

X(IX2-IX1+1), YLIMS(IX2-IX1+1)
INTEGER IOFF

BIAS

LOGICAL CENTER
Plot a series of cross-sections through a 2D data array.
Each cross-section is plotted as a hidden line histogram. The plot
can be slanted to give a pseudo-3D effect - if this is done, the
call to PGENV may have to be changed to allow for the increased X
range that will be needed.

Arguments:
DATA (input)
WXV (input)
nYv (input)
IX1 (input)
1X2 (input)
1Y1 (input)
1Y2 (input)
X (input)
IOFF (input)
BIAS (input)
CENTER (input)
YLIMS (input)

: the data array to be plotted.
: the first dimension of DATA.
: the second dimension of DATA.

: PGHI2D plots a subset of the input array DATA.

This subset is delimited in the first (x)
dimension by IX1 and IX2 and the 2nd (y) by IY1
and IY2, inclusively. Note: IY2 < IY1 is
permitted, resulting in a plot with the
cross-sections plotted in reverse Y order.
However, IX2 must be => IX1.

: the abscissae of the bins to be plotted. That is,

X(1) should be the X value for DATA(IX1,IY1), and
X should have (IX2-IX1+1) elements. The program
has to assume that the X value for DATA(x,y) is
the same for all y.

an offset in array elements applied to successive
cross-sections to produce a slanted effect. A
plot with IOFF > O slants to the right, one with
IOFF < 0 slants left.

a bias value applied to each successive cross-
section in order to raise it above the previous
cross-section. This is in the same units as the
data.

if .true., the X values denote the center of the
bins; if .false. the X values denote the lower
edges (in X) of the bins.

: workspace. Should be an array of at least

(IX2-IX1+1) elements.

A-22 SUBROUTINE DESCRIPTIONS

A.31 PGHIST - histogram of unbinned data

SUBROUTINE PGHIST (N, DATA, DATMIN, DATMAX, NBIN, PGFLAG)
INTEGER N
REAL DATA (%)
REAL DATMIN, DATMAX
INTEGER NBIN, PGFLAG
Draw a histogram of N values of a variable in array
DATA(1...W) in the range DATMIN to DATMAX using NBIN bins. WNote
that array elements which fall exactly on the boundary between
two bins will be counted in the higher bin rather than the
lower one; and array elements whose value is less than DATMIN or
greater than or equal to DATMAX will not be counted at all.

Arguments:

i (input) : the number of data values.

DATA (input) : the data values. Note: the dimension of array
DATA must be greater than or equal to N. The
first 0 elements of the array are used.

DATMIN (input) : the minimum data value for the histogram.

DATMAX (input) : the maximum data value for the histogram.

NBIN (input) : the number of bins to use: the range DATMIN to
DATMAX is divided into NBIN equal bins and
the number of DATA values in each bin is
determined by PGHIST. NBIN may not exceed 200.

PGFLAG (input) : if PGFLAG = 1, the histogram is plotted in the
current window and viewport; if PGFLAG = O,
PGENV is called automatically by PGHIST to start
a new plot (the x-limits of the window will be
DATMIN and DATMAX; the y-limits will be chosen
automatically.

A.32 PGIDEN - write username, date, and time at bottom of plot

SUBROUTINE PGIDEN
Write username, date, and time at bottom of plot.
Arguments: none.

A.33 PGLAB - write labels for x-axis, y-axis, and top of plot

SUBROUTINE PGLAB (XLBL, YLBL, TOPLBL)
CHARACTER*(*) XLBL, YLBL, TOPLBL
Write labels outside the viewport. This routine is a simple
interface to PGMTXT, which should be used if PGLAB is inadequate.
Arguments:
XLBL (input) : a label for the x-axis (centered below the
viewport).
YLBL (input) : a label for the y-axis (centered to the left
of the viewport, drawn vertically).
TOPLBL (input) : a label for the entire plot (centered above the
viewport).

SUBROUTINE DESCRIPTIONS

A.34 PGLABEL - non-standard alias for PGLAB

SUBROUTINE PGLABEL (XLBL, YLBL, TOPLBL)
CHARACTER*(*) XLBL, YLBL, TOPLBL

A.35 PGLCUR - draw a line using the cursor

SUBROUTINE PGLCUR (MAXPT, NPT, X, Y)

INTEGER MAXPT, NPT

REAL X(x), Y(*)
Interactive routine for user to enter a polyline by use of
the cursor. Routine allows user to Add and Delete vertices;
vertices are joined by straight-line segments.

Arguments:
MAXPT (input) : maximum number of points that may be accepted.
NPT (in/out) : number of points entered; should be zero on

first call.
X (in/out) : array of x-coordinates (dimension at least MAXPT).
Y (in/out) : array of y-coordinates (dimension at least MAXPT).
Notes:

(1) On return from the program, cursor points are returned in

the order they were entered. Routine may be (re-)called with points
already defined in X,Y (# in NPT), and they will be plotted

first, before editing.

(2) User commands: the user types single-character commands

after positioning the cursor: the following are accepted:

A (Add) - add point at current cursor location.
D (Delete) - delete last-entered point.
X (eXit) - leave subroutine.

A.36 PGLDEYV - list available device types

SUBROUTINE PGLDEV
Writes a list to the terminal of all device types known to the
current version of PGPLOT.
Arguments: none.

A-24 SUBROUTINE DESCRIPTIONS

A.37 PGLEN - Find length of a string in a variety of units

SUBROUTINE PGLEN (UNITS, STRING, XL, YL)
REAL XL, YL
INTEGER UNITS
CHARACTER*(*) STRING
Work out length of a string in x and y directions

Input
UNITS O => answer in normalized device coordinates
1 => answer in inches
2 => answer in mm
3 => answer in absolute device coordinates (dots)
4 => answer in world coordinates
5 => answer as a fraction of the current viewport size
STRING : String of interest
Output
XL : Length of string in x direction
YL : Length of string in y direction

A.38 PGLINE - draw a polyline (curve defined by line-segments)

SUBROUTINE PGLINE (N, XPTS, YPTS)
INTEGER N
REAL XPTS(*), YPTS(*)
Primitive routine to draw a Polyline. A polyline is one or more
connected straight-line segments. The polyline is drawn using
the current setting of attributes color-index, line-style, and
line-width. The polyline is clipped at the edge of the window.
Arguments:
i (input) : number of points defining the line; the line
consists of (N-1) straight-line segments.
N should be greater than 1 (if it is 1 or less,
nothing will be drawn).
XPTS (input) : world x-coordinates of the points.
YPTS (input) : world y-coordinates of the points.
The dimension of arrays X and Y must be greater than or equal to N.
The "pen position' is changed to (X(N),Y(N)) in world coordinates
(if 0 > 1).

A.39 PGMOVE - move pen (change current pen position)

SUBROUTINE PGMOVE (X, Y)

REAL X, Y
Primitive routine to move the '"pen" to the point with world
coordinates (X,Y). No line is drawn.
Arguments:
X (input) : world x-coordinate of the new pen position.
Y (input) : world y-coordinate of the new pen position.

SUBROUTINE DESCRIPTIONS A-25

A.40 PGMTEXT - non-standard alias for PGMTXT

SUBROUTINE PGMTEXT (SIDE, DISP, COORD, FJUST, TEXT)
CHARACTER*(*) SIDE, TEXT
REAL DISP, COORD, FJUST

A.41 PGMTXT - write text at position relative to viewport

SUBROUTINE PGMTXT (SIDE, DISP, COORD, FJUST, TEXT)
CHARACTER*(*) SIDE, TEXT
REAL DISP, COORD, FJUST
Write text at a position specified relative to the viewport (outside
or inside). This routine is useful for annotating graphs. It is used

by routine PGLAB.

The text is written using the current values of

attributes color-index, line-width, character-height, and

character-font.
Arguments:
SIDE (input)

DISP (input)

COORD (input)

FJUST (input)

TEXT (input)

: must include one of the characters ’B’, ’L’, ’T’,

or R’ signifying the Bottom, Left, Top, or Right
margin of the viewport. If it includes ’LV’ or
’RV’, the string is written perpendicular to the
frame rather than parallel to it.

: the displacement of the character string from the

specified edge of the viewport, measured outwards
from the viewport in units of the character
height. Use a negative value to write inside the
viewport, a positive value to write outside.

: the location of the character string along the

specified edge of the viewport, as a fraction of
the length of the edge.

controls justification of the string parallel to
the specified edge of the viewport. If

FJUST = 0.0, the left-hand end of the string will
be placed at COORD; if JUST = 0.5, the center of
the string will be placed at COORD; if JUST = 1.0,
the right-hand end of the string will be placed at
at COORD. Other values between O and 1 give inter-
mediate placing, but they are not very useful.

the text string to be plotted. Trailing spaces are
ignored when justifying the string, but leading
spaces are significant.

A-26 SUBROUTINE DESCRIPTIONS

A.42 PGNCUR - mark a set of points using the cursor

SUBROUTINE PGHNCUR (MAXPT, NPT, X, Y, SYMBOL)

INTEGER MAXPT, NPT

REAL X(x), Y(x)

INTEGER SYMBOL
Interactive routine for user to enter data points by use of
the cursor. Routine allows user to Add and Delete points. The
points are returned in order of increasing x-ccordinate, not in the
order they were entered.

Arguments:

MAXPT (input) : maximum number of points that may be accepted.

NPT (in/out) : number of points entered; should be zero on
first call.

X (in/out) : array of x-coordinates.

Y (in/out) : array of y-coordinates.

SYMBOL (input) : code number of symbol to use for marking
entered points (see PGPT).

Note (1): The dimension of arrays X and Y must be greater than or
equal to MAXPT.
Hote (2): On return from the program, cursor points are returned in
increasing order of X. Routine may be (re-)called with points
already defined in X,Y (number in NPT), and they will be plotted
first, before editing.
Note (3): User commands: the user types single-character commands
after positioning the cursor: the following are accepted:

A (Add) - add point at current cursor location.
D (Delete) - delete nearest point to cursor.
X (eXit) - leave subroutine.

A.43 PGNCURSE - non-standard alias for PGNCUR

SUBROUTINE PGNCURSE (MAXPT, NPT, X, Y, SYMBOL)
INTEGER MAXPT, NPT

REAL X(x), Y(*)

INTEGER SYMBOL

SUBROUTINE DESCRIPTIONS A-27

A.44 PGNUMB - convert a number into a plottable character string

SUBROUTINE PGNUMB (MM, PP, FORM, STRING, NC)
INTEGER MM, PP, FORM
CHARACTER*(*) STRING
INTEGER NC
This routine converts a number into a decimal character
representation. To avoid problems of floating-point roundoff, the
number must be provided as an integer (MM) multiplied by a power of 10
(10#*PP) . The output string retains only significant digits of MM,
and will be in either integer format (123), decimal format (0.0123),
or exponential format (1.23x10%%5). Standard escape sequences \u, \d
raise the exponent and \\ is used for the multiplication sign.
This routine is used by PGBOX to create numeric labels for a plot.
Formatting rules:
(a) Decimal notation (FORM=1):
- Trailing zeros to the right of the decimal sign are
omitted
- The decimal sign is omitted if there are no digits
to the right of it
- When the decimal sign is placed before the first digit
of the number, a zero is placed before the decimal sign
- The decimal sign is a period (.)
- Ho spaces are placed between digits (ie digits are not
grouped in threes as they should be)
- A leading minus (-) is added if the number is negative
(b) Exponential notation (FORM=2):
- The exponent is adjusted to put just one (non-zero)
digit before the decimal sign
- The mantissa is formatted as in (a), unless its value is
1 in which case it and the multiplication sign are omitted
- If the power of 10 is not zero and the mantissa is not
zero, an exponent of the form \\10\u[-Innn is appended,
where \\ is a multiplication sign (cross), \u is an escape
sequence to raise the exponent, and as many digits nnn
are used as needed
(c) Automatic choice (FORM=0):
Decimal notation is used if the absolute value of the
number is less than 10000 or greater than or equal to
0.01. Otherwise exponential notation is used.

Arguments:

MM (input)

PP (input) : the value to be formatted is MM*10**PP.

FORM (input) : controls how the number is formatted:
FORM = O -- use either decimal or exponential
FORM = 1 -- use decimal notation
FORM = 2 -- use exponential notation

STRING (output) : the formatted character string, left justified.
If the length of STRING is insufficient, a single
asterisk is returned, and NC=1.

Ji[¢ (output) : the number of characters used in STRING:
the string to be printed is STRING(1:NC).

A-28 SUBROUTINE DESCRIPTIONS

A.45 PGOLIN — mark a set of points using the cursor

SUBROUTINE PGOLIN (MAXPT, NPT, X, Y, SYMBOL)

INTEGER MAXPT, NPT

REAL X(x), Y(%)

INTEGER SYMBOL
Interactive routine for user to enter data points by use of
the cursor. Routine allows user to Add and Delete points. The
points are returned in the order that they were entered (unlike

PGHCUR) .

Arguments:

MAXPT (input) : maximum number of points that may be accepted.

NPT (in/out) : number of points entered; should be zero on
first call.

X (in/out) : array of x-coordinates.

Y (in/out) : array of y-coordinates.

SYMBOL (input) : code number of symbol to use for marking
entered points (see PGPT).

Note (1): The dimension of arrays X and Y must be greater than or
equal to MAXPT.

Hote (2): On return from the program, cursor points are returned in
the order they were entered. Routine may be (re-)called with points
already defined in X,Y (number in NPT), and they will be plotted
first, before editing.

Note (3): User commands: the user types single-character commands
after positioning the cursor: the following are accepted:

A (Add) - add point at current cursor location.
D (Delete) - delete the last point entered.
X (eXit) - leave subroutine.

A.46 PGPAGE - advance to new page

SUBROUTINE PGPAGE
Advance plotter to a new (sub-)page, clearing the screen if
necessary. If the "prompt state" is ON (see PGASK), confirmation is
requested from the user before clearing the screen. For an
explanation of sub-pages, see PGBEG. PGPAGE does not change the
window or the position of the viewport relative to the (sub-)page.
Arguments: none

SUBROUTINE DESCRIPTIONS A-29

A.47 PGPAP - change the size of the view surface (”paper size”)

SUBROUTINE PGPAP (WIDTH, ASPECT)

REAL WIDTH, ASPECT
This routine changes the size of the view surface to a specified
width and aspect ratio (height/width), in so far as this is possible
on the specific device. It is always possible to obtain a view
surface smaller than the default size; on some devices (e.g.,
printers that print on roll or fan-feed paper) it is possible
to obtain a view surface larger than the default. If this routine is
used, it must be called immediately after PGBEGIN.
Arguments:

WIDTH (input) : the requested width of the view surface in inches;
if WIDTH=0.0, PGPAP will obtain the largest view
surface available consistent with argument ASPECT.

ASPECT (input) : the aspect ratio (height/width) of the view
surface; e.g., ASPECT=1.0 gives a square view
surface, ASPECT=0.618 gives a horizontal
rectangle, ASPECT=1.618 gives a vertical rectangle.

A.48 PGPAPER - non-standard alias for PGPAP

SUBROUTINE PGPAPER (WIDTH, ASPECT)
REAL WIDTH, ASPECT

A-30 SUBROUTINE DESCRIPTIONS

A.49 PGPIXL - draw pixels

SUBROUTINE PGPIXL (IA, IDIM, JDIM, I1, I2, J1, J2,

1 X1, X2, Y1, Y2)

INTEGER IDIM, JDIM, Ii, I2, J1, J2

INTEGER IA(IDIM,JDIM)

REAL X1, X2, Y1, Y2
Draw lots of solid-filled (tiny) rectangles alligned with the
coordinate axes. Best performance is achieved when output is
directed to a pixel-oriented device and the rectangles coincide
with the pixels on the device. In other cases, pixel output is
emulated.
The subsection of the array IA defined by indices (I1:I2, J1:J2)
is mapped onto world-coordinate rectangle defined by X1, X2, Y1
and Y2. This rectangle is divided int (I2 - I1 + 1) * (J2 - J1 + 1)
small rectangles. Each of these small rectangles is solid-filled
with the color index specified by the corresponding element of
IA.
On most devices, the output region is '"opaque', i.e., it obscures
all graphical elements previously drawn in the region. But on
devices that do not have erase capability, the background shade
is "transparent' and allows previously-drawn graphics to show

through.
Arguments:
IA (input) : the array to be plotted.
IDIM (input) : the first dimension of array A.
JDIM (input) : the second dimension of array A.
I1, I2 (input) : the inclusive range of the first index
(I) to be plotted.
J1i, J2 (input) : the inclusive range of the second
index (J) to be plotted.
X1, Y1 (input) : world coordinates of one corner of the output
region
X2, Y2 (input) : world coordinates of the opposite corner of the

output region

SUBROUTINE DESCRIPTIONS A-31

A.50 PGPNTS - draw one or more graph markers

SUBROUTINE PGPNTS (N, X, Y, SYMBOL, HS)

INTEGER N, NS

REAL X(*), Y(*)

INTEGER SYMBOL (*)
Draw Graph Markers. Unlike PGPT, this routine can draw a different
symbol at each point. The markers
are drawn using the current values of attributes color-index,
line-width, and character-height (character-font applies if the symbol
number is >31). If the point to be marked lies outside the window,
no marker is drawn. The 'pen position'" is changed to
(XPTS(N) ,YPTS(N)) in world coordinates (if N > 0).

Arguments:

i (input) : number of points to mark.

X (input) : world x-coordinate of the points.
Y (input) : world y-coordinate of the points.

SYMBOL (input) : code number of the symbol to be plotted at each
point (see PGPT).

NS (input) : number of values in the SYMBOL array. If NS <=1,
then the first NS points are drawn using the value
of SYMBOL(I) at (X(I), Y(I)) and SYMBOL(1) for all
the values of (X(I), Y(I)) where I > NS.

Note: the dimension of arrays X and Y must be greater than or equal
to N and the dimension of the array SYMBOL must be greater than or
equal to HS. If N is 1, X and Y may be scalars (constants or
variables). If NS is 1, then SYMBOL may be a scalar. If N is

less than 1, nothing is drawn.

A.51 PGPOINT - non-standard alias for PGPT

SUBROUTINE PGPOINT (N, XPTS, YPTS, SYMBOL)
INTEGER N

REAL XPTS(*), YPTS(x*)

INTEGER SYMBOL

A-32 SUBROUTINE DESCRIPTIONS

A.52 PGPOLY - fill a polygonal area with shading

SUBROUTINE PGPOLY (N, XPTS, YPTS)

INTEGER N

REAL XPTS (%), YPTS(*)
Fill-area primitive routine: shade the interior of a closed
polygon in the current window. The action of this routine depends
on the setting of the Fill-Area Style attribute. If Fill-Area Style
is SOLID (the default), the interior of the polygon is solid-filled
using the current Color Index. If Fill-Area Style is HOLLOW, the
outline of the polygon is drwan using the current line attributes
(color index, line-style, and line-width). Other values of the Fill-
Area attribute may be allowed in future, e.g., for shading with
patterns or hatching. The polygon is clipped at the edge of the
window. The pen position is changed to (XPTS(1),YPTS(1)) in world
coordinates (if N > 1). If the polygon is not convex, a point is
assumed to lie inside the polygon if a straight line drawn to
infinity intersects and odd number of the polygon’s edges.

Arguments:

N (input) : number of points defining the polygon; the
line consists of N straight-line segments,
joining points 1 to 2, 2 to 3,... N-1 to N, N to 1.
N should be greater than 2 (if it is 2 or less,
nothing will be drawn).

XPTS (input) : world x-coordinates of the vertices.

YPTS (input) : world y-coordinates of the vertices.

Note: the dimension of arrays XPTS and YPTS must be
greater than or equal to N.

SUBROUTINE DESCRIPTIONS

A.53 PGPT - draw one or more graph markers

SUBROUTINE PGPT (N, XPTS, YPTS, SYMBOL)

INTEGER N
REAL XPTS(*), YPTS(x*)

INTEGER SYMBOL
Primitive routine to draw Graph Markers (polymarker). The markers
are drawn using the current values of attributes color-index,
line-width, and character-height (character-font applies if the symbol

number is >31).

Arguments:

i} (input)
XPTS (input)
YPTS (input)
SYMBOL (input)

If the point to be marked lies outside the window,
no marker is drawn.

The "pen position' is changed to
(XPTS(N) ,YPTS(N)) in world coordinates (if N > 0).

: number of points to mark.
: world x-coordinates of the points.
: world y-coordinates of the points.

code number of the symbol to be drawn at each

point:
-1, -2

-3..-31

0..31

32..127 :

> 127

a single dot (diameter = current

line width).

a regular polygon with ABS(SYMBOL)
edges (style set by current fill style).
standard marker symbols.

ASCII characters (in current font).

e.g. to use letter F as a marker, let
SYMBOL = ICHAR(C’F’).

a Hershey symbol number.

Note: the dimension of arrays X and Y must be greater than or equal
to N. If N is 1, X and Y may be scalars (constants or variables). If
N is less than 1, nothing is drawn.

A.54 PGPTEXT - non-standard alias for PGPTXT

SUBROUTINE PGPTEXT (X, Y, ANGLE, FJUST, TEXT)

REAL X, Y, ANGLE, FJUST

CHARACTER*(*) TEXT

A-33

A-34 SUBROUTINE DESCRIPTIONS

A.55 PGPTXT - write text at arbitrary position and angle

SUBROUTINE PGPTXT (X, Y, ANGLE, FJUST, TEXT)

REAL X, Y, ANGLE, FJUST

CHARACTER*(*) TEXT
Primitive routine for drawing text. The text may be drawn at any
angle with the horizontal, and may be centered or left- or right-
justified at a specified position. Routine PGTEXT provides a
simple interface to PGPTXT for horizontal strings. Text is drawn
using the current values of attributes color-index, line-width,
character-height, and character-font. Text is NOT subject to
clipping at the edge of the window.

Arguments:
X (input) : world x-coordinate.
Y (input) : world y-coordinate. The string is drawn with the

baseline of all the characters passing through
point (X,Y); the positioning of the string along
this line is controlled by argument FJUST.

ANGLE (input) : angle, in degrees, that the baseline is to make
with the horizontal, increasing counter-clockwise
(0.0 is horizontal).

FJUST (input) : controls horizontal justification of the string.
If FJUST = 0.0, the string will be left-justified
at the point (X,Y); if FJUST = 0.5, it will be
centered, and if FJUST = 1.0, it will be right
justified. [Other values of FJUST give other
justifications.]

TEXT (input) : the character string to be plotted.

A.56 PGQCF - inquire character font

SUBROUTINE PGQCF (IF)

INTEGER IF
Query the current Character Font (set by routine PGSCF).
Argument :
IF (output) : the current font number (in range 1-4).

A.57 PGQCH - inquire character height

SUBROUTINE PGQCH (SIZE)

REAL SIZE
Query the Character Size attribute (set by routine PGSCH).
Argument :

SIZE (output) : current character size (dimensionless multiple of
the default size).

SUBROUTINE DESCRIPTIONS

A.58 PGQCI - inquire color index

SUBROUTINE PGQCI (CI)

INTEGER CI
Query the Color Index attribute (set by routine PGSCI).
Argument :
CI (output) : the current color index (in range O-max). This is

the color index actually in use, and may differ
from the color index last requested by PGSCI if
that index is not available on the output device.

A.59 PGQCOL - inquire color capability

SUBROUTINE PGQCOL (CI1, CI2)

INTEGER CI1, CI2
Query the range of color indices available on the current device.
Argument :

CI1 (output) : the minimum available color index. This will be
either O if the device can write in the
background color, or 1 if not.

CI2 (output) : the maximum available color index. This will be
1 if the device has no color capability, or a
larger number (e.g., 3, 7, 15, 255).

A.60 PGQCR - inquire color representation

PGQCR: not yet available.

A.61 PGQFS - inquire fill-area style

SUBROUTINE PGQFS (FS)

INTEGER FS
Query the current Fill-Area Style attribute (set by routine
PGSFS) .
Argument :
FS (output) : the current fill-area style:

FS = 1 => solid (default)
FS = 2 => hollow

A-35

SUBROUTINE DESCRIPTIONS

A.62 PGQINF - inquire PGPLOT general information

SUBROUTINE PGQINF (ITEM, VALUE, LENGTH)

CHARACTER* (%) ITEM, VALUE

INTEGER LENGTH
This routine can be used to obtain miscellaneous information about
the PGPLOT environment. Input is a character string defining the
information required, and output is a character string containing the
requested information.
The following item codes are accepted (note that the strings must
match exactly, except for case, but only the first 8 characters are
significant). For items marked *, PGPLOT must be in the OPEN state
for the inquiry to succeed. If the inquiry is unsuccessful, either
because the item code is not recognized or because the information
is not available, a question mark (’7’) is returned.

’VERSION’ - version of PGPLOT software in use.
’STATE’ - status of PGPLOT (’OPEN’ if a graphics device

is open for output, ’CLOSED’ otherwise).
*USER’ - the username associated with the calling program.
YHOW? - current date and time (e.g., ’17-FEB-1986 10:047).
’DEVICE’ * - current PGPLOT device or file.
’FILE’ * - current PGPLOT device or file.
’TYPE’ * - device-type of the current PGPLOT device.
’DEV/TYPE’ #* - current PGPLOT device and type, in a form which

is acceptable as an argument for PGBEG.

HARDCOPY’ * - is the current device a hardcopy device? (’YES’ or
YN0 .

’TERMINAL’> * - is the current device the user’s interactive
terminal? (’YES’ or ’HNO’).

’CURSOR’ * - does the current device have a graphics cursor?
(’YES’ or ’NO’).

Arguments:
ITEM (input) : character string defining the information to
be returned; see above for a list of possible
values.

VALUE (output) : returns a character-string containing the
requested information.

LENGTH (output): the number of characters returned in VALUE
(VALUE is padded with spaces to the length
supplied).

A.63 PGQLS - inquire line style

SUBROUTINE PGQLS (LS)

INTEGER LS
Query the current Line Style attribute (set by routine PGSLS).
Argument :

LS (output) : the current line-style attribute (in range 1-5).

SUBROUTINE DESCRIPTIONS

A.64 PGQLW - inquire line width

SUBROUTINE PGQLW (LW)

INTEGER LW
Query the current Line-Width attribute (set by routine PGSLW).
Argument :
LW (output) : the line-width (in range 1-21).

A.65 PGQPOS - inquire current pen position

SUBROUTINE PGQPOS (X, Y)

REAL X, Y
Query the current "pen" position in world C coordinates (X,Y).
Arguments:
X (output) : world x-coordinate of the pen position.
Y (output) : world y-coordinate of the pen position.

A.66 PGQVP - inquire viewport size and position

SUBROUTINE PGQVP (UNITS, X1, X2, Y1, Y2)

INTEGER UNITS

REAL X1, X2, Y1, Y2
Inquiry routine to determine the current viewport setting.
The values returned may be normalized device coordinates, inches, mm,
or pixels, depending on the value of the input parameter CFLAG.

Arguments:

UNITS (dinput) : used to specify the units of the output parameters:
UNITS = O : normalized device coordinates
UNITS = 1 : inches
UNITS = 2 : millimeters
UNITS = 3 : pixels
Other values give an error message, and are
treated as O.

X1 (output) : the x-coordinate of the bottom left corner of the
viewport.

X2 (output) : the x-coordinate of the top right corner of the
viewport.

Y1 (output) : the y-coordinate of the bottom left corner of the
viewport.

Y2 (output) : the y-coordinate of the top right corner of the

viewport.

A-37

A-38 SUBROUTINE DESCRIPTIONS

A.67 PGQWIN - inquire window boundary coordinates

SUBROUTINE PGQWIN (X1, X2, Y1, Y2)

REAL X1, X2, Y1, Y2
Inquiry routine to determine the current window setting.
The values returned are world coordinates.

Arguments:

X1 (output) : the x-coordinate of the bottom left cormer
of the window.

X2 (output) : the x-coordinate of the top right corner
of the window.

Y1 (output) : the y-coordinate of the bottom left cormer
of the window.

Y2 (output) : the y-coordinate of the top right corner

of the window.

A.68 PGRECT - draw a rectangle, using fill-area attributes

SUBROUTINE PGRECT (X1, X2, Y1, Y2)
REAL X1, X2, Y1, Y2
This routine can be used instead of PGPOLY for the special case of
drawing a rectangle aligned with the coordinate axes; only two
vertices need be specified instead of four. On most devices, it is
faster to use PGRECT than PGPOLY for drawing rectangles. The
rectangle has vertices at (X1,Y1), (X1,Y2), (X2,Y2), and (X1,Y2).
Arguments:
X1, X2 (input) : the horizontal range of the rectangle.
Y1, Y2 (input) : the vertical range of the rectangle.

A.69 PGRND - find the smallest ”round” number greater than x

REAL FUNCTION PGRND (X, NSUB)
REAL X
INTEGER NSUB
Rooutine to find the smallest '"round" number larger than x, a
"round" number being 1, 2 or 5 times a power of 10. If X is negative,
PGRND(X) = -PGRND(ABS(X)). eg PGRED(8.7) = 10.0,
PGRND(-0.4) = -0.5. If X is zero, the value returned is zero.
CThis routine is used by PGBOX for choosing tick intervals.

Returns:

PGRID : the '"round" number.
Arguments:

X (input) : the number to be rounded.

NSUB (output) : a suitable number of subdivisions for
subdividing the 'nice" number: 2 or 5.

SUBROUTINE DESCRIPTIONS

A.70 PGRNGE - choose axis limits

SUBROUTINE PGRNGE (X1, X2, XLO, XHI)

REAL X1, X2, XLO, XHI
Choose plotting limits XLO and XHI which encompass the data
range X1 to X2.

Arguments:

X1, X2 (input) : the data range (X1<X2), ie, the min and max values
to be plotted.

XLO

XHI (output) : suitable values to use as the extremes of a graph

axis (XLO <= X1, XHI >= X2).

A.71 PGSCF - set character font

SUBROUTINE PGSCF (IF)
INTEGER IF
Set the Character Font for subsequent text plotting. Four different
fonts are available:
1: (default) a simple single-stroke font (''normal" font)
2: roman font
3: italic font
4: script font
This call determines which font is in effect at the beginning of
each text string. The font can be changed (temporarily) within a text
string by using the escape sequences \fn, \fr, \fi, and \fs for fonts
1, 2, 3, and 4, respectively.
Argument :
IF (input) : the font number to be used for subsequent text
plotting (in range 1-4).

A.72 PGSCH - set character height

SUBROUTINE PGSCH (SIZE)

REAL SIZE
Set the character size attribute. The size affects all text and graph
markers drawn later in the program. The default character size is
1.0, corresponding to a character height about 1/40 the height of
the view surface. Changing the character size also scales the length
of tick marks drawn by PGBOX and terminals drawn by PGERRX and PGERRY.
Argument :
SIZE (input) : new character size (dimensionless multiple of

the default size).

A-39

A-40

SUBROUTINE DESCRIPTIONS

A.73 PGSCI - set color index

SUBROUTINE PGSCI (CI)

INTEGER CI
Set the Color Index for subsequent plotting, if the output device
permits this. The default color index is 1, usually white on a black
background for video displays or black on a white background for
printer plots. The color index is an integer in the range O to a
device-dependent maximum. Color index O corresponds to the background
color; lines may be 'erased' by overwriting them with color index O
(if the device permits this).
If the requested color index is not available on the selected device,
color index 1 will be substituted.
The assignment of colors to color indices can be changed with
subroutine PGSCR (set color representation). Color indices 0-15
have predefined color representations (see the PGPLOT manual), but
these may be changed with PGSCR. Color indices above 15 have no
predefined representations: if these indices are used, PGSCR must
be called to define the representation.
Argument :

CI (input) : the color index to be used for subsequent plotting
on the current device (in range O-max). If the
index exceeds the device-dependent maximum, the
default color index (1) is used.

A.74 PGSCR - set color representation

SUBROUTINE PGSCR (CI, CR, CG, CB)

INTEGER CI

REAL CR, CG, CB
Set color representation: i.e., define the color to be
associated with a color index. Ignored for devices which do not
support variable color or intensity. Color indices 0-15
have predefined color representations (see the PGPLOT manual), but
these may be changed with PGSCR. Color indices 16-maximum have no
predefined representations: if these indices are used, PGSCR must
be called to define the representation. On monochrome output
devices (e.g. VT125 terminals with monochrome monitors), the
monochrome intensity is computed from the specified Red, Green, Blue
intensities as 0.30%R + 0.59%G + 0.11*B, as in US color television
systems, NTSC encoding. Note that most devices do not have an
infinite range of colors or monochrome intensities available;
the nearest available color is used. Examples: for black,
set CR=CG=CB=0.0; for white, set CR=CG=CB=1.0; for medium gray,
set CR=CG=CB=0.5; for medium yellow, set CR=CG=0.5, CB=0.0.

Argument :

CI (input) : the color index to be defined, in the range O-max.
If the color index greater than the device
maximum is specified, the call is ignored. Color
index O applies to the background color.

CR (input) : red, green, and blue intensities,

CG (input) in range 0.0 to 1.0.

CB (input)

SUBROUTINE DESCRIPTIONS A-41

A.75 PGSFS — set fill-area style

SUBROUTINE PGSFS (FS)
INTEGER FS
Set the Fill-Area Style attribute for subsequent area-fill by
PGPOLY. At present only two styles are available: solid (fill
polygon with solid color of the current color-index), and hollow
(draw outline of polygon only, using current line attributes).
Argument :
FS (input) : the fill-area style to be used for subsequent
plotting:
FS = 1 => solid (default)
FS = 2 => hollow
Other values give an error message and are
treated as 2.

A.76 PGSHLS - set color representation using HLS system

SUBROUTINE PGSHLS (CI, CH, CL, CS)

INTEGER CI

REAL CH, CL, CS
Set color representation: i.e., define the color to be
associated with a color index. This routine is equivalent to
PGSCR, but the color is defined in the Hue-Lightness-Saturation
model instead of the Red-Green-Blue model.
Reference: SIGGRAPH Status Report of the Graphic Standards Planning
Committee, Computer Graphics, Vol.13, No.3, Association for
Computing Machinery, New York, NY, 1979.

Argument :

CI (input) : the color index to be defined, in the range O-max.
If the color index greater than the device
maximum is specified, the call is ignored. Color
index O applies to the background color.

CH (input) : hue, in range 0.0 to 360.0.

CL (input) : lightness, in range 0.0 to 1.0.

(o} (input) : saturation, in range 0.0 to 1.0.

A.7T7 PGSLS - set line style

SUBROUTINE PGSLS (LS)

INTEGER LS
Set the line style attribute for subsequent plotting. This
attribute affects line primitives only; it does not affect graph
markers, text, or area fill.
Five different line styles are available, with the following codes:
1 (full line), 2 (dashed), 3 (dot-dash-dot-dash), 4 (dotted),
5 (dash-dot-dot-dot). The default is 1 (normal full line).
Argument :
LS (input) : the line-style code for subsequent plotting

(in range 1-5).

A-42 SUBROUTINE DESCRIPTIONS

A.78 PGSLW - set line width

SUBROUTINE PGSLW (LW)

INTEGER LW
Set the line-width attribute. This attribute affects lines, graph
markers, and text. Thick lines are generated by tracing each line
with multiple strokes offset in the direction perpendicular to the
line. The line width is specified by the number of strokes to be
used, which must be in the range 1-201. The actual line width
obtained depends on the device resolution.
Argument :
LW (input) : the number of strokes to be used

(in range 1-201).

A.79 PGSVP - set viewport (normalized device coordinates)

SUBROUTINE PGSVP (XLEFT, XRIGHT, YBOT, YTOP)

REAL XLEFT, XRIGHT, YBOT, YTOP
Change the size and position of the viewport, specifying
the viewport in normalized device coordinates. Normalized
device coordinates run from O to 1 in each dimension. The
viewport is the rectangle on the view surface '"through"
which one views the graph. All the PG routines which plot lines
etc. plot them within the viewport, and lines are truncated at
the edge of the viewport (except for axes, labels etc drawn with
PGBOX or PGLAB). The region of world space (the coordinate
space of the graph) which is visible through the viewport is
specified by a call to PGSWIN. It is legal to request a
viewport larger than the view surface; only the part which
appears on the view surface will be plotted.
Arguments:
XLEFT (input) : x-coordinate of left hand edge of viewport, in HDC.
XRIGHT (input) : x-coordinate of right hand edge of viewport,

in NDC.

YBOT (input) : y-coordinate of bottom edge of viewport, in NDC.
YTOP (input) : y-coordinate of top edge of viewport, in HDC.

SUBROUTINE DESCRIPTIONS A-43

A.80 PGSWIN - set window

SUBROUTINE PGSWIN (X1, X2, Y1, Y2)

REAL X1, X2, Y1, Y2
Change the window in world coordinate space that is to be mapped on
to the viewport. Usually PGSWIN is called automatically by PGENV,
but it may be called directly by the user.

Arguments:
X1 (input) : the x-coordinate of the bottom left cormer
of the viewport.
X2 (input) : the x-coordinate of the top right corner
of the viewport (note X2 may be less than X1).
Y1 (input) : the y-coordinate of the bottom left cormer
of the viewport.
Y2 (input) : the y-coordinate of the top right corner

of the viewport (note Y2 may be less than Y1).

A.81 PGTBOX - Draw a box and optionally write HH MM SS style numeric labelling.

SUBROUTINE PGTBOX (XOPT, XTICKD, NXSUBD, YOPT, YTICKD, NYSUBD)
REAL XTICKD, YTICKD
INTEGER NXSUBD, NYSUBD
CHARACTER XOPT*(*), YOPT*(*)
Draw a box and optionally label one or both axes with HH MM SS style
numeric labels (useful for time or RA - DEC plots). Should deal with
axes that increase or decrease, and are positive or negative, or both.
If the HH MM SS labelling is desired, then PGSWIN should have been
previously called with the extrema in SECONDS.
Inputs:
XOPT : X-options for PGBOX. Same as for PGBOX plus ’Z’ for time
labelling, and ’F’ means write only the last part of the
label for the first time tick on the axis. E.g., if
the full first label is 17 42 34.4 then write only 34.4
YOPT : Y-options for PGBOX. Same as for PGBOX plus ’Z’ and ’F’
XTICKD : X-axis major tick increment. Use 0.0 to get default.
YTICKD : Y-axis major tick increment. Use 0.0 to get default.
NXSUB : Number of intervals for minor ticks on X-axis. Use O for default
NYSUB : Number of intervals for minor ticks on Y-axis. Use O for default

A-44 SUBROUTINE DESCRIPTIONS

A.82 PGTEXT - write text (horizontal, left-justified)

SUBROUTINE PGTEXT (X, Y, TEXT)

REAL X, Y

CHARACTER*(*) TEXT
Write text. The bottom left corner of the first character is placed
at the specified position, and the text is written horizontally.
This is a simplified interface to the primitive routine PGPTXT.
For non-horizontal text, use PGPTXT.

Arguments:
X (input) : world x-coordinate of start of string.
Y (input) : world y-coordinate of start of string.

TEXT (input) : the character string to be plotted.

A.83 PGUPDT - update display

SUBROUTINE PGUPDT
Update the graphics display: flush any pending commands to the
output device. This routine empties the buffer created by PGBBUF,
but it does not alter the PGBBUF/PGEBUF counter. The routine should
be called when it is essential that the display be completely up to
date (before interaction with the user, for example) but it is not
known if output is being buffered.
Arguments: none

A.84 PGVPORT - non-standard alias for PGSVP

SUBROUTINE PGVPORT (XLEFT, XRIGHT, YBOT, YTOP)
REAL XLEFT, XRIGHT, YBOT, YTOP

SUBROUTINE DESCRIPTIONS A-45

A.85 PGVSIZ - set viewport (inches)

SUBROUTINE PGVSIZ (XLEFT, XRIGHT, YBOT, YTOP)
REAL XLEFT, XRIGHT, YBOT, YTOP
Change the size and position of the viewport, specifying
the viewport in physical device coordinates (inches). The
viewport is the rectangle on the view surface '"through"
which one views the graph. All the PG routines which plot lines
etc. plot them within the viewport, and lines are truncated at
the edge of the viewport (except for axes, labels etc drawn with
PGBOX or PGLAB). The region of world space (the coordinate
space of the graph) which is visible through the viewport is
specified by a call to PGSWIN. It is legal to request a
viewport larger than the view surface; only the part which
appears on the view surface will be plotted.
Arguments:
XLEFT (input) : x-coordinate of left hand edge of viewport, in
inches from left edge of view surface.
XRIGHT (input) : x-coordinate of right hand edge of viewport, in
inches from left edge of view surface.

YBOT (input) : y-coordinate of bottom edge of viewport, in
inches from bottom of view surface.
YTOP (input) : y-coordinate of top edge of viewport, in inches

from bottom of view surface.

A.86 PGVSIZE - non-standard alias for PGVSIZ

SUBROUTINE PGVSIZE (XLEFT, XRIGHT, YBOT, YTOP)
REAL XLEFT, XRIGHT, YBOT, YTOP

A.87 PGVSTAND - non-standard alias for PGVSTD

SUBROUTINE PGVSTAND

A.88 PGVSTD - set standard (default) viewport

SUBROUTINE PGVSTD
Define the viewport to be the standard viewport. The standard
viewport is the full area of the view surface (or subpage),
less a margin of 4 character heights all round for labelling.
It thus depends on the current character size, set by PGSCH.
Arguments: none.

A-46 SUBROUTINE DESCRIPTIONS

A.89 PGWINDOW - non-standard alias for PGSWIN

SUBROUTINE PGWINDOW (X1, X2, Y1, Y2)
REAL X1, X2, Y1, Y2

A.90 PGWNAD - set window and adjust viewport to same aspect ratio

SUBROUTINE PGWNAD (X1, X2, Y1, Y2)

REAL X1, X2, Y1, Y2
Change the window in world coordinate space that is to be mapped on
to the viewport, and simultaneously adjust the viewport so that the
world-coordinate scales are equal in x and y. The new viewport is
the largest one that can fit within the previously set viewport
while retaining the required aspect ratio.

Arguments:
X1 (input) : the x-coordinate of the bottom left cormer
of the viewport.
X2 (input) : the x-coordinate of the top right corner
of the viewport (note X2 may be less than X1).
Y1 (input) : the y-coordinate of the bottom left cormer
of the viewport.
Y2 (input) : the y-coordinate of the top right corner of the

viewport (note Y2 may be less than Y1).

Appendix B

PGPLOT SYMBOLS

The PGPLOT primitive subroutines PGPOINT and PGPTEXT are used
for drawing symbols (graph markers) and strings of symbols (text). The
available symbols are listed in this appendix. The total number of different
symbols available is about 1000. Each symbol is composed of a set of vectors,
based on digitized type fonts devised by A. V. Hershey of the US Naval
Postgraduate School, and each symbol is assigned a number in the range
0-4000. PGPLOT uses the ASCII code for representing graph markers and
symbols. ASCII codes 0-31 are used for the graph markers, and codes
32-127 are used for the standard ASCII printable characters. The font-
switching and escape mechanisms described in Chapters 4 and 5 can be
used to enlarge the available character set.

Table B.1 shows the graphical representation of all the available symbols
arranged according to Hershey’s numerical sequence; the blank spaces in this
table represent “space” characters of various widths. Note that not every
number has an associated character. Any character can be inserted in a
text string using an escape sequence of the form \ (n), where n is the 4-digit
Hershey number.

B-2 PGPLOT SYMBOLS

Table B.1 PGPLOT Character Set

0001 0002 0003 0004 0005 0006 0007 0008 0009 0010
A B (o4 D E F G H |
0011 0012 0013 0014 0015 0016 0017 0018 0019 0020
K L M N o] P Q R S
0021 0022 0023 0024 0025 0026 0027 0028 0029 0030
u v v X Y 4 A B r
0031 0032 0033 0034 0035 0036 0037 0038 0039 0040
E 4 H e | K A M N =
0041 0042 0043 0044 0045 0046 0047 0048 0049 0050
(o] n P z T T L X W
0197 0198 0199 0200 0201 0202 0203 0204 0205 0206
Q 1 2 3 4 5
0207 0208 0209 0210 0211 0212 0213 0214 0215 0216
0 . 1 ?
7 8 9 . s : ; '
0217 0218 0219 0220 0221 0222 0223 0224 0225 0226
" ° $ / () | - +
0227 0228 0229 0230 0231 0232 0233 0234 0235 0236
x * - ‘ ! - # &]
0238 0239 0240 0242 0248 0250 0252 0254 0256 0258
N
.o .o —
v~ x| x| =2 | O
0259 0261 0262 0263 0264 0265 0266 0267 0268 0269
0270 0271 0272 0273 0274 0275 0276 0278 0279 0280
0281 0282 0284 0501 0502 0503 0504 0505 0506 0507
0508 0509 0510 o511 0512 0513 0514 0515 0516 0517
0518 0519 0520 0521 0522 0523 0524 0525 0526 0527

Table B.1 (continued)

PGPLOT SYMBOLS

B-3

0528 0529 0530 0531 0532 0533 0534 0535 0536 0537
A A
0538 0539 0540 0541 0542 0543 0544 0545 0546 0547
- o]
0548 0549 0550 0551 0552 0553 0554 0555 0556 0557
0 P
0558 0559 0560 0561 0562 0563 0564 0565 0566 0567
y 9
0568 0569 0570 0571 0572 0573 0574 0575 0576 0583
J \Y
0580 0601 0602 0603 0604 0605 0606 0607 0608 0609
b .
0610 0611 0612 0613 0614 0615 0616 0617 0618 0619
s
0620 0621 0622 0623 0624 0625 0626 0627 0628 0629
v Y
0630 08631 0632 0633 0634 0635 0636 08637 0638 0639
¢ v
0640 0641 0642 0643 0644 0645 0646 0647 0648 0649
v v
0650 0651 0652 0653 0654 0655 0656 0657 0658 0659
o I
0660 0661 0662 0663 0664 0665 0666 0667 0668 0669
¢ y
0670 0671 0672 0673 0674 0675 0676 0677 0683 0684
" €
0685 0686 0687 0697 0698 0699 0700 0701 0702 0703
S 3
0704 0705 0706 0707 0708 0709 0710 0711 0712 0713
6 ;

B-4 PGPLOT SYMBOLS

Table B.1 (continued)

0714 0715 0716 0717 0718 0719 0720 0721 0722 0723

0724 0725 0726 0727 0728 0729 0730 0731 0732 0733

0734 0735 0737 0738 0739 0740 0741 0742 0743 0744

0745 0746 0750 0751 0752 0753 0754 0755 0756 0757

0758 0759 0760 a761 0762 0763 0764 0765 0766 0767

M o - >) < S oo 0o <
0768 0796 a797 0798 0799 0800 0801 0802 0803 0804
0805 0806 0807 0808 0809 0810 0811 0812 0813 0814

N - / AN r «] B ~—
0815 0816 0817 0818 0819 0820 0821 0822 0823 0824

0825 0826 0827 0828 0829 0830 0831 0832 0833 0834

0840 0841 0842 0843 0844 0845 0846 0847 0850 0851

0852 0853 0854 0855 0856 0857 0860 0861 0862 0863

0864 0865 0866 0867 0868 0869 0870 0871 0872 0873

0874 0899 0900 0901 0902 0903 0904 0905 0906 0907,
. - . o o o o | O

0908 0909 0910 2001 2002 2003 2004 2005 2006 2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Table B.1 (continued)

PGPLOT SYMBOLS

B-5

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

R T U \ w X A
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

B A E Z H e A
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

M O 0 IT P z)

-
=

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057

X Q A B C D G
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067

H J K L M N Q
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

R T U |4 w X R
2078 2101 2102 2103 2104 2105 2106 2107 2108 2109

)i\ b c d e f i
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

.

] | m n o p S
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129

t \4 w X y y/ 4
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

6 ¢ n 9 L K 1%
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149

£ i P (o) T v ('
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

w b c d e f 1
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

J l m n 0 o s
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179

t v w z Yy z il
2180 2181 2182 2184 2185 2186 2187 2190 2191 2192

il 1 € 6 ¢ S St

B-6

PGPLOT SYMBOLS

Table B.1 (continued)

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
. ! o ' " /)
; ! :
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
A ¢
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
t 3
v - v € T
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
< " 0 V v/ oo &
2273 2274 2275 2276 2277 2278 2279 2281 2282 2283
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
2294 2295 2296 2297 2298 2299 2301 2302 2303 2304
8 1§] 7 v N bt %
2305 2306 2307 2308 2309 2310 2311 2312 2317 2318
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
/ o 2] o # - X
2329 2330 2331 2332 2367 2368 2369 2370 2371 2372
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
-

Table B.1 (continued)

PGPLOT SYMBOLS

B-7

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
2411 2412 2501 2502 2503 2504 2505 2506 2507 2508
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
2519 2520 2521 2522 2523 2524 2525 2526 2551 2552
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
2573 2574 2575 2576 2601 2602 2603 2604 2605 2606
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
h .

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660

(% b c s y
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670

3 { m ~ ¢
2671 2672 2673 2674 2675 2676 2697 2698 2699 2700

w (24 (/7 O
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710

1 2 3 8 .
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720

: ; &

’ . ’
2721 2722 2723 2724 2725 2726 2727 2728 2729 2747

() * "

B-8

PGPLOT SYMBOLS

Table B.1 (continued)

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767

8 9 : ! 2 ’
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

& $ () + !
2778 2779 2801 2802 2803 2804 2805 2806 2807 2808

" ° B B I E 3

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818

" " JI M 0 II C
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
2829 2830 2831 2832 2901 2902 2903 2904 2905 2906
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916

x 3 n KX M H I
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
2927 2928 2929 2930 2931 2932

Appendix C1

INSTALLATION INSTRUCTIONS (VMS)

C1.1 Introduction

PGPLOT consists of four “layers” of subroutines. The subroutines in each
layer call only subroutines in the same layer or in the next layer down:

1. The top-level PGPLOT subroutines; these routines call only other PG-
PLOT routines.

2. The “primitive” PGPLOT routines; these are used by the top-level rou-
tines and can be called by users’ programs. They call the routines at
the next level to perform graphical output.

3. Device-independent support routines. These are responsible for things
like scaling, windowing, and character-generation.

4. Device handler routines: these generate graphical output for specific
device types. There is one device handler subroutine for each supported
device type.

Routines at levels 1 and 2 are the only ones that should be referenced
directly by a user’s program. They are all described fully in Appendix A.

C1.2 Restoring the Save Set

PGPLOT is usually distributed in the form of a VAX/VMS BACKUP save
set on magnetic tape. This save set contains a directory tree: the main
directory, [PGPLOT], and several subdirectories: [PGPLOT.DRIVERS],
[PGPLOT.EXAMPLES], [PGPLOT.FONTS], [PGPLOT.MANUAL], and
[PGPLOT.SOURCE]. The save set should be restored to a similar directory
tree. The following example indicates how the VMS BACKUP command
can be used to copy the files into directories called [USER.PGPLOT] and
[USER.PGPLOT.*]. It is a good idea to make sure that these destination
directories either do not exist or are empty before beginning the BACKUP
command.

$ MOUNT/FOREIGN MTAO: PGPLOT

$ BACKUP/LOG/VERIFY MTAO:PGPLOT.BCK/SELECT=[PGPLOT...] -

DISK: [USER.PGPLOT...]
$ DISMOUNT MTAO:

C1-2 INSTALLATION INSTRUCTIONS (VMS)

The main directory, [PGPLOT], contains all the files needed to link
and run PGPLOT programs. The subdirectories contain the source code,
example programs, utility programs, and documentation.

The directory [PGPLOT] includes:

1. Object code: the object-module library GRPCKG.OLB, the shareable
image GRPSHR.EXE, and the shareable-image symbol-table library
GRPSHR.OLB.

2. Command procedures: LOGICAL.COM and MAKEHELP.COM. These

procedures are described below.

3. Documentation: PGPLOT.DOC is the text of the subroutine synopses
in Appendix A. PGPLOT.HLB is a VMS-format HELP library contain-
ing the same information.

4. Miscellaneous: DOCUMENT.FOR, DOCUMENT.EXE (used in creat-
ing documentation); GRFONT.DAT (binary representation of the PG-
PLOT character set); GMFPLOT.FOR and GMFPLOT.EXE (metafile
translator); PGATTRIB.FOR (a Fortran include file defining symbolic
names for the various PGPLOT attribute codes).

The directory [PGPLOT.DRIVERS] contains source code for device-
handler subroutines that are not included in the executable version of PG-
PLOT as distributed. Instructions for incorporating these device handlers
in the executable version are given below. Adding support for a new device
type requires the addition of a new device handler subroutine. No other
changes to PGPLOT are required. For details, consult Appendix E.

The directory [PGPLOT.EXAMPLES] contains a number of programs
for demonstrating and testing PGPLOT. The source code is in files PGEX1-
.FOR, PGEX2.FOR, etc., and executable code in PGEX1.EXE, etc.. The
command procedure EXCOMP.COM can be used to recompile and link one
or all of the example programs.

The directory [PGPLOT.FONTS] contains some utility programs for
manipulating the binary file containing character definitions (font informa-
tion). This directory can be deleted if you do not want to edit the character
set.

The directory [PGPLOT.MANUAL] contains the text of this PGPLOT
manual (in TEX format) and Fortran programs for creating the figures. This
directory can be deleted if you do not wish to print copies of the manual, or
if you do not have the TEX document formatting program.

The directory [PGPLOT.SOURCE] contains the complete source code
for PGPLOT, including the device handlers built in to the distribution ver-
sion. PGPLOT.FOR contains the Fortran source code for routines in levels
1 and 2; all these routines have names beginning with PG. GRPCKG.FOR,
GRCHAR.FOR, GRSYMB.FOR, and GRVMS.FOR contain the source code

INSTALLATION INSTRUCTIONS (VMS) C1-3

for routines in level 3. The file GRVMS.FOR contains system-dependent rou-
tines which will have to be rewritten for a different operating system. The
various files *DRIVER.FOR contain the source code for the level-4 device
handlers. All the routines in level 3 have names beginning with GR. The
files PGPLOT.INC and GRPCKGI1.INC are referenced by VAX Fortran
INCLUDE statements in PGPLOT.FOR and GRPCKG.FOR, respectively.
The command procedures ADD.COM, BUILD.COM, COMPILE.COM, and
NEWGE.COM are used to rebuild PGPLOT from the source code (see be-
low).

C1.3 Logical Names

A number of VMS logical names must be defined before PGPLOT can be
used. The procedure LOGICAL.COM will define these logical names, but it
may be necessary to modify it slightly. A possible definition is the following:

$ DEFINE/SYSTEM PGPLOT_DIR SYS:[PGPLOT]

$ DEFINE/SYSTEM LNK$LIBRARY PGPLOT_DIR:GRPSHR.OLB
$ DEFINE/SYSTEM PGPLOT_TYPE PRINTRONIX

$ DEFINE/SYSTEM PGPLOT_FONT PGPLOT_DIR:GRFONT.DAT
$ DEFINE/SYSTEM GRPSHR PGPLOT_DIR:GRPSHR.EXE

It is not essential that they be “system” logical names.

1. PGPLOT_DIR. This is a logical name pointing to the directory contain-
ing the PGPLOT files. The name need not be PGPLOT_DIR; another
name can be chosen, so long as the other logical names are modified
accordingly.

2. LNK$LIBRARY. This is optional. It tells the VMS linker to automat-
ically scan GRPSHR.OLB for subroutine references. If LNK$LIBRARY
is already defined, choose another name like LNK$§LIBRARY_1 (see the
VAX/VMS Linker manual).

3. PGPLOT_TYPE. This is optional. It provides a default device type for use
by PGPLOT when no device type is provided explicitly by the user.

4. PGPLOT_FONT. This is essential. Whenever a PGPLOT program is run,
it attempts to read the character-set definition from the file defined by
this logical name. (If it fails, the program will continue, but requests to
plot text or graph markers will be ignored.)

5. GRPSHR. This logical name must be defined at run-time if the shareable-
image version of PGPLOT is used (see below).

C1-4 INSTALLATION INSTRUCTIONS (VMS)

C1.4 The Shareable Image

Programs using the PGPLOT library can be linked in two different ways:

$ LINK EXAMPLE,PGPLOT_DIR:GRPSHR/LIB
$ LINK EXAMPLE,PGPLOT_DIR:GRPCKG/LIB

Usually the first library (GRPSHR.OLB) should be used. When this library is
used, the subroutines are not included in the .EXE file, but are fetched from
a shareable image when you execute the RUN command. This makes the .EXE
file much smaller, and means that the program need not be relinked when
changes are made to the graphics subroutines; but the .EXE file can only be
run on a machine which has a copy of the shareable image. If the second
library (GRPCKG.OLB) is used, the subroutines are included in the .EXE file
and the program can be run on any VAX computer running a compatible
version of VMS. In general, the shareable image is to be preferred.

C1.5 Recompiling PGPLOT

To recompile PGPLOT, proceed as follows.

1. In directory [PGPLOT.SOURCE]: make sure that the source code for
all the device handlers you wish to include is in this directory (files
*DRIVER.FOR). Device handlers that you do not wish to include should
be moved to directory [PGPLOT.DRIVERS].

2. Execute the DCL command procedure COMPILE.COM. This compiles all
the Fortran files in the directory, and creates a new version of the object-
module library GRPCKG.OLB. See the comments in the procedure for more
information.

3. The shareable image, GRPSHR.EXE, and shareable-image symbol-table
library, GRPSHR.OLB, can be rebuilt from GRPCKG.OLB by executing the
command procedure BUILD.COM. Again, see the comments in the pro-
cedure for more information. (Note: do not modify the symbol table
defined in BUILD.COM; if you do, the resulting programs will not be
portable.)

4. You can now delete all the object module files (*.0BJ) if you wish.

5. The new version of PGPLOT consists of three files: GRPCKG.OLB, GRP-
SHR.EXE, and GRPSHR.OLB. It is possible to test the new version by
redefining logical name GRPSHR to point to the new GRPSHR.EXE. If you
are satisfied with the new version, rename (or copy) these three files
into the main directory, [PGPLOT], superseding the old version.

INSTALLATION INSTRUCTIONS (VMS) C1-5

C1.6 Recompiling the Example Programs

The procedure EXCOMP.COM in directory [PGPLOT.EXAMPLES] can be used to
compile and link any of the example programs:

$ QEXCOMP 7
$ QEXCOMP

The first command compiles PGEX7. The second compiles all the example
programs.

C1.7 Rebuilding the Documentation Files

The files PGPLOT.DOC and PGPLOT.HLB contain documentation extracted
from the PGPLOT source code. The files can be rebuilt by executing the
procedure MAKEHELP.COM in directory [PGPLOT]. This procedure also up-
dates the TEX version of the documentation included in Appendix A of the
manual.

C1.8 Printing the Manual

The TEX source-code for the PGPLOT manual can be found in the subdi-
rectory [PGPLOT.MANUAL] in a number of files with type .TEX. These files
can be used to make a printable copy of the manual if you have the TpX
text-formatting program:

$ TEX PGPLOT

The file PGPLOT.TEX contains TEpX \input commands that reference the
other .TEX files. Please do not modify the TEX files: send your comments
and bug reports to the author.

The figures in the manual were generated using PGPLOT subroutines.
The Fortran programs used to generate them can also be found in the [PG-
PLOT.MANUAL] directory.

C1-6 INSTALLATION INSTRUCTIONS (VMS)

C1.9 Adding a new PGPLOT routine

The author is happy to receive contributions of new high-level routines for
inclusion in PGPLOT. Some general guidelines should be observed when
preparing such routines:

1. The routine should be written (as far as possible) in standard Fortran-

77,

2. The routine should call only other PGPLOT routines, or special support
routines provided along with it. It should not use routines from other
libraries (especially commercial ones!). Note that if it is to be installed
in the shareable library, it cannot use common blocks for communication
with the program that calls it. It may, if necessary, use common blocks
to communicate with other PGPLOT routines, but this is discouraged.

3. It should be modular: that is, it should avoid, as far as possible, making
assumptions about the environment it is to run in, or modifying that
environment. In particular: if it changes any attribute (e.g., color index)
it should save the previous value of that attribute (obtained by calling
a PGQ... routine) and reset it before exiting; it should not change the
window or viewport, but if it must, it should restore the old values
before exiting; it should not call PGBEGIN or PGEND.

4. It should call routine PGBBUF at the beginning, and PGEBUF before exit-
ing, in order to buffer its output.

5. It should provide a generally useful function rather than a highly specific
one, with as many parameters as possible accessible to the user (e.g., as
arguments) rather than fixed in the program.

Appendix C2

INSTALLATION INSTRUCTIONS (UNIX)

C2.1 Introduction

All UNIX systems are different, so the installation procedure described here
may not work on your system, and some editing and debugging may be
required. Please read all the installation instructions before attempting to
install PGPLOT. I first describe the installation procedure which I have used
on our systems (Convex and Sun); I hope it will work on other Berkeley-
derived UNIX systems. If you have trouble with the installation, you should
read Section C.3, which is intended to provide sufficient background infor-
mation for you to adapt PGPLOT to a different system.

The UNIX version of PGPLOT is distributed in source form on a ‘tar’
tape (usually a 9-track, 1600-bpi tape).

C2.2 Basic Installation

The following installation procedure has been run on a Convex C-1 running
Version 6.2 or 7.0 of the Convex operating system with Fortran compiler
FC Version 4.1 or 5.0, and on Sun-3 and Sun-4 workstations running SunOS
Release 4.0 with Sun Fortran Release 1.1. It does nol work with earlier
versions of the Convex Fortran compiler, the Sun operating system, or the
Sun Fortran compiler.

1. Copy the files from the distribution tape to your disk. The files are orga-
nized in three directories: pgplot, pgplot/examples, and pgplot/fonts.
To copy the files from the ‘tar’ tape, you should first change your default
directory to the parent directory of pgplot, and use a command like the
following:

tar xv pgplot

This will create a pgplot directory in your current directory and install
the PGPLOT files in it. (If you already have a pgplot directory, remove
it first.) If you are not using ‘tar’ but are copying the files from another
system, make sure that you put the files in the correct directories.

C2-2 INSTALLATION INSTRUCTIONS (UNIX)

2. Compile the PGPLOT subroutines and create the PGPLOT object li-
brary. Change your default directory to PGPLOT and then use ‘make’
to do the compilation. The distribution tape contains two ‘makefiles’, one
for Convex (Makefile.CONVEX) and one for Sun (Makefile.SUN). You can
rename the appropriate file to Makefile, or use the -f option of ‘make’:

cd pgplot
make -f Makefile.SUN

If all goes well, you should get no error messages from the compilation. (The
SUN Fortran compiler issues an incorrect warning message that MOD is an
unused variable when compiling grre04 and grte04; you can ignore this
message.)

3. Build the binary font file. The font file (read at run time by PGPLOT
programs) is distributed in an ASCII text form in file grfont.txt and must
be converted to binary form before use. This is done using the ‘makefile’ in
the fonts directory; again there are separate versions for Convex and Sun:

cd fonts
make -f Makefile.SUN grfont.dat

This compiles a program pgpack to do the conversion and then runs it. It
should display a message like the following:

Characters defined: 996
Array cells used: 26732

You now need to define an environment variable that defines the location of
the binary font file, e.g.:

setenv PGPLOT_FONT /usr/name/pgplot/fonts/grfont.dat

Substitute the appropriate path for /usr/name/pgplot; or while you are in
the fonts directory, type

setenv PGPLOT_FONT ‘pwd‘/grfont.dat

The fonts directory also contains utility programs pgunpack and pgdchar
that you will need only if you plan to modify the font file (not recommended).

4. Compile the test and demonstration programs in the examples directory.
Again there there are separate ‘makefiles’ for Convex and Sun:

cd ../examples
make -f Makefile.SUN

INSTALLATION INSTRUCTIONS (UNIX) C2-3

At this point, you may run out of disk space (if you haven’t done already)
as the executable programs are rather large. If necessary, you can compile
the programs one at a time, e.g.:

make -f Makefile.SUN pgdemol

to compile program pgdemol. The two demonstration programs pgdemol
and pgdemo?2 each generate several screens (pages) illustrating the use of PG-
PLOT subroutines. There is also a general test program, pgex17, described
in Appendix E, and two test programs for the cursor routines, pgex15 and
pgex18.

5. Run at least one of the test programs, e.g. pgdemol.
pgdemol

The program will prompt for a device specification. Type a question mark
? to get a list of available device handlers. Read the PGPLOT manual for
details of device specifications, and the remainder of this Appendix for notes
on the available device handlers. Run the program once for each device that
you wish to test. I hope that all will go well; if not, read the next section.
The commonest problem is that you get graphs with no text. This implies
that the program cannot read the font file (you should also get a message
to this effect). Check the definition of PGPLOT_FONT (see above).

6. If everything so far looks all right, you can move the files to their fi-
nal destinations (this may require superuser privilege and the cooperation
of your system manager). You need to keep two files: the object library
pgplot/libpgplot.a and the binary font file pgplot/fonts/grfont.dat.
Everything else can be deleted if you want to conserve disk space; it can
always be recovered from the distribution tape. The object library should
(ideally) be moved to the directory where the loader expects to find libraries;
usually /usr/lib:

cd pgplot
cp libpgplot.a /usr/1lib

You can then use -1pgplot with 1d or your Fortran compiler to link a pro-
gram with the PGPLOT library. The location of the font file is arbitrary, but
as distributed, PGPLOT expects to find it in /usr/local/lib/grfont.dat:

cd fonts
cp grfont.dat /usr/local/lib

If you want to put it in some other location, you can either define PG-
PLOT_FONT every time you use a PGPLOT program (see above), or modify

C2-4

the

INSTALLATION INSTRUCTIONS (UNIX)

default location by editing file pgplot/grsy00.£f and recompiling (see

step 2). (Note that if you modify any PGPLOT routine, you will have to
remodify it each time you install a new version of PGPLOT.)

7. Finally, you should attempt to compile and link a PGPLOT program of
your own. On Convex:

fc -o program program.f -lpgplot

On Sun:

77 -o program program.f -lpgplot -lsuntool -lcgi77 -lcgi\
-lsunwindow -lpixrect -1m

Note that the Sun version requires all the above libraries to be included,
in the order indicated (assuming that the /SUNVIEW and /CGI device

handlers are included, as they are in the distribution tape).

C2.3 Advanced Installation

This section addresses problems that you may encounter trying to install
PGPLOT on a different UNIX system, and indicates what options are open
to you to solve them.

you

Examine the ‘makefiles’ in the pgplot directory and make sure that
understand what they do. In particular, you may need to change the

definitions of the Fortran compiler and compilation switches.

The subroutines are organized into several groups in the ‘makefile’:

. PG routines. These are the top level PGPLOT routines that can be

called by application programs, plus a few internal routines. They are
identical to the VMS version, and are written in standard Fortran-77
(I believe) with two exceptions; the INCLUDE statement and the use of
subroutines names longer than 6 characters. The former can be avoided
by use of a preprocessor or by hand-editing the code to replace each
INCLUDE statement with the text of the included file; the latter is fun-
damental to PGPLOT, but you might try truncating names to 6 char-
acters.

. GR routines. These are internal routines. They are also supposed to

be standard Fortran-77, but there are a few problems. As in the PG
routines, some subroutine names are longer than 6 characters, and the
INCLUDE statement is used. A large array BUFFER used in grsy00.f
and grsyxd.f is declared INTEGER*2 to save space both internally and
in the binary font file (the array is just a copy of the disk file); if you
change it to INTEGER, you must make the same change in the pgpack

INSTALLATION INSTRUCTIONS (UNIX) C2-5

program in the fonts directory. Routine grgrps.f uses a hexadecimal
format code (Z2.2) which is non-standard.

. Drivers. Each device handler is a subroutine with a name like xxdriv
(for device xx). The ‘makefile’ lists the additional subroutines required
for each handler. The DRIVERS macro lists all the device handlers to
be included in the final library. You customize PGPLOT by changing
the list assigned to DRIVERS. The device handlers are not written in
standard Fortran-77, although I have tried to adhere to the standard
where possible. Please let me know what problems you have. Some
of the handlers call on subroutines written in C rather than Fortran.
The conventions for writing a C subroutine to be called from a Fortran
program are different on different systems (it may not even be possible).
Thus you may need to do a lot of work to get each handler going. But
note that you don’t need to have all the handlers running in order to
test PGPLOT. It is sufficient to include just the null device handler,
which is written in standard Fortran-77. (See below for notes on each

handler.)

. Dispatch routine. The routine grexec must be modified to include the
list of device handlers you wish to include in PGPLOT. Two different
versions are provided on the distribution tape; one for Convex and one
for Sun. It is a simple multi-way GOTO (CASE statement), one branch for
each handler. Eventually this routine will be assembled automatically
during the installation procedure, but at present you must edit it by
hand.

. System routines. These routines, called from all levels of PGPLOT,
encapsulate various operating-system dependent functions. If you have
trouble with these routines, you will need to write new versions. I hope
that the internal comments are sufficient to explain what each routine
is supposed to do. The version distributed calls on a number of Fortran
library functions which are normally part of Berkeley-UNIX but which
may not be present in other varieties (e.g., getenv, getlog, hostnm).

. Obsolete routines. This group includes a number of routines that are
no longer an official part of PGPLOT, but they may be called by some
old PGPLOT application programs. If you have such programs, I rec-
ommend you rewrite them, but if necessary you can compile an ad-
ditional library containing these routines by the command make -f
Makefile.SUN libpgobs.a .

C2-6 INSTALLATION INSTRUCTIONS (UNIX)

C2.4 Device Handlers

The UNIX version of PGPLOT is distributed with a much smaller set of
device handlers than the VMS version. If you modify any of the device
handlers or write new ones, please (a) try to keep them as portable as
possible, and (b) send copies to me so that I can include them in future
distributions. See Appendix E for instructions on writing a device handler.

Null device The null device handler is nudriv. Use device specification
/NULL. Qutput sent to the null device is discarded; i.e., PGPLOT produces
no output. This device handler is fully portable.

SunView (Sun only) File svdriv is a first attempt at a handler for Sun
workstations running SunView, from Brian M. Sutin (sutin@astro.umd.edu).
It is written in C. Programs which use it must be linked with several libraries
(in order):

-lsuntool -lsunwindow -lpixrect

Use device specification /SUNVIEW. Please let me know if you have any prob-
lems with this handler, or make improvements to it.

Sun-CGI (Sun only) File cgdriv is another handler for Sun workstations
running SunView, from Allyn Tennant. It only works with color worksta-
tions, but could probably be easily modified for monochrome workstations.
It calls on the Sun CGI routines, and hence programs which use it must be
linked with several libraries (in order):

-lcgi77 -lcgi -lsunwindow -lpixrect -1m

Use device specification /CGI. PGPLOT creates a window on the screen, or
uses the whole screen if you are not running SunView. There is no cursor
available with this handler. The window is closed when your program exits,
so it is not possible to overlay one plot on top of another by using the
undocumented /APPEND qualifier.

IVAS (Convex only) The handler for the IIS IVAS image display (ivdriv,
device specification /IVAS) calls C routines to do most of the work. It is
self-contained (no other libraries are required), but will require a compatible
version of the Convex device driver for the interface board.

INSTALLATION INSTRUCTIONS (UNIX) C2-7

Imagraph (Convex only) This is a handler for the Imagraph image dis-
play (tvdriv, device specification /IMAGRAPH). The board is an AGC SE-
RIES VME-1280-10 board (IMAgraph Corporation, 800 West Cummings
Park, Woburn, Massachusetts 01801), and utilizes a Hitachi HD63484 Ad-
vanced CRT Controller (ACRTC) as graphics engine. It is configured with
1024 x 1024 8-bit pixels (image frame memory) plus a 2-bit pixel overlay.
The device handler is self-contained (no other libraries are required), but it
will require the Caltech Convex device driver for the interface board (contact
Judy Cohen for more information).

Tektronix terminals and emulators The basic Tektronix-4010 han-
dler is tedriv (/TEK). Extensions for use with Retrographics terminals and
GraphOn terminals are provided in files redriv (/RETRO) and gfdriv (/GF),
respectively. The code for these handlers is fairly standard, with the excep-
tion of C routines in gr_term_io.c for writing to the terminal. As control
characters must be output, the terminal is put in ‘cbreak’ mode during out-
put. The tedriv handler works with the Sun Tektronix emulator tektool.
The cursor works with these device handlers on the Convex but not on Suns:
I would appreciate suggestions for fixing this problem.

PostScript printers The PostScript handlers (psdriv for landscape
mode, vpdriv for portrait mode) adhere fairly closely to standard Fortran-
77, and so should be easily ported to different systems. The files that they
create do not display correctly in the Sun psview PostScript preview pro-
gram owing to what I assume is a bug in Sun’s implementation of PostScript.
The PostScript handlers can optionally insert a control-D (end-of-file) char-
acter at the beginning and end of the PostScript file, which may be needed
by some PostScript printers. To enable this option, define the environment
variable PGPLOT_PS_EOF (with any value).

REGIS terminals (e.g., DEC VT125) The REGIS device handler is
in file vtdriv; specify a device type of /VT125. It is fairly close to standard
Fortran-77. The default output device is the user’s terminal, but a disk
file can also be specified. The display should be satisfactory on VT125
terminals; later DEC terminals (like V1240, VI340) do not have separate
memories for text and graphics, and this leads to problems with programs
that interleave text and graphical output. At present, the cursor is not
implemented.

Other devices (Convex only) The basic installation procedure installs
some additional drivers in the Convex version of PGPLOT, but these have
not been tested in other versions. Imagen printers: imdriv; Printronix
printers: pxdriv; QMS printers: gmdriv and vqdriv; Versatec printers:
vedriv and vvdriv.

C2-8 INSTALLATION INSTRUCTIONS (UNIX)

C2.5 Special Notes: Sun

The Sun Fortran compiler treats the ‘backslash’ character (\) as a special
escape character in literal character strings. This means that any programs
that try to make use of the PGPLOT escape-character mechanism, which
also uses backslash, will have problems. Until Sun provides a way to disable
this annoying behavior of the compiler, the solution is to replace each occur-
rence of \ by \\. This does not cause problems within the PGPLOT library
(there are no literal \ characters), but it does affect the example programs
and many application programs. The ‘makefile’ in the examples directory
passes the example programs through the Sun filter £77cvt which performs
this substitution (among other things).

C2.6 Acknowledgments

I am grateful to Jon Danskin of Convex Computer Corporation for the ini-
tial port of PGPLOT to Convex-UNIX, Allyn Tennant (NASA Marshall)
for providing the Sun-CGI device handler, Brian Sutin (University of Mary-
land) for the SunView device handler, Neil Killeen (University of Illinois)
for comments on the Sun implementation, and Judy Cohen (Caltech) for
providing time on Sun-3 and Sun-4 workstations.

T. J. Pearson
29 May 1989

Appendix D

SUPPORTED DEVICES

D.1 Introduction

This Appendix presents device-specific information for some of the sup-
ported devices. Table D.1 shows the devices for which device handlers are
available, together with the names by which they are known to PGPLOT.
The names of the device types can be abbreviated so long as there is no am-
biguity; in most cases, this means the first two letters are sufflicient. Each
installation of PGPLOT is configured with the devices appropriate for that
installation, so not every device is available in every installation of PGPLOT.
Some devices are available under VMS only, and others are available under
Unix only.

The description of each device is organized under the following headings:
Supported device: description of device.

Device type code: the code to be used (following the /) in a PGPLOT
device specification; usually this can be abbreviated to two letters. Some
devices can be used in two modes: landscape (long axis horizontal) and
portrait (long axis vertical). Different device type codes are used for the
two modes.

Default file or device name: the file or device name that is used by
default if none is included in the device specification. (For example, if the de-
vice specification is given as /VERS, it is expanded to PGPLOT.VEPLOT/VERS;
if it is given as UV/VERS, it is expanded to UV.VEPLOT/VERS.)

Default view surface dimensions: Most hardcopy devices print on
11 x 8.5-inch paper, and the standard usable “view surface” is 10.5 x 8.0
inches. The dimensions are meaningless for most CRT devices where the
image size depends on the size of the monitor.

Resolution: The nominal resolution of the device in pixels/inch. The
exact resolution can be ill-defined; e.g., on a pen plotter, it depends on the
size of the pen nib.

Color capability: What color indices are available? Can the representa-
tion of each color index be changed? Do changes to the representation affect
primitive elements that have already been drawn?

D-2

SUPPORTED DEVICES

Table D.1 Available Devices

Terminals

GraphOn GO-230 terminal

Tektronix 4006/4010 storage-tube terminal
Retrographics modified VI'100 terminal (VT640)
DEC VT125, VT240, or VT340 terminal (REGIS)
Tektronix 4100-series color terminal

ZSTEM 240/4014 terminal emulators (IBM PC)

High-resolution Display Devices

DeAnza (Gould 8500 low resolution)
Grinnell GMR-270 Image Display System
Digisolve Tkon Pixel Engine

Liacom Graphic Video Display (GVD-02)
Peritek Corp. VCH-Q frame-buffer video
Peritek Corp. VCK-Q frame-buffer video
Sigma Args, 7000 series

Sigma, ThH670 terminal

Tektronix 4014 (12 bit addressing)
VAX/VMS workstations

Sun workstations (SunView mode)

Sun workstations (using CGI routines)
IIS IVAS image display

Imagraph image display

Pen Plotters

Gould (now Bryans) Colourwriter 6320
HPGL Driver (tested on HP7475A plotter)
HPGL Driver (portrait mode)

Hewlett Packard 7221 pen plotter

Houston Instruments HIDMP pen plotter
Bruning (fmr Nicolet) Zeta 8 Digital Plotter

Laser Printers

Hewlett Packard LaserJet, LaserJet+,I1
PostScript device (landscape mode)

PostScript device (portrait mode)

QUIC devices (QMS 800 etc) (landscape mode)
QUIC devices (QMS 800 etc) (portrait mode)
Canon LBP-8/A2 Laser printer (landscape mode)
Canon LBP-8/A2 Laser printer (landscape mode)
Canon LBP-8/A2 Laser printer (portrait mode)
Impress (Imagen) device (landscape mode)
Impress (Imagen) device (portrait mode)

/GF
/TEK4010
/RETRO
/VT125
/TK4100
/ZSTEM

/DEanza
/GRINNELL
/IKon
/LIacom
/PERITEK
/PK
/ARgs
/GOC
/TFILE
/WS
/SUNVIEW
/CGI
/IVAS
/IMA

/CW6320
/HPGL
/VHPG
/HP7221
/HIDMP
/ZEta

/L]

/PS

/VPS

/QMS
/VQMS
/BCanon
/CAnon
/VCanon
/IMPRESS
/VIMPRESS

SUPPORTED DEVICES

Table D.1 (continued)

Dot-matrix Printers

EPSON FX100 printer

EXCL (C.Itoh Megaserve) printer
LA50 and other DEC sixel printers
Printronix P300 or P600 printer
Toshiba “3-in-on”” printer, model P351
Versatec V80 printer (landscape mode)
Versatec V80 printer (portrait mode)

Other

Null device (no graphical output)
Metafile

/EPSON
/EXCL

/LA50
/PRINTRONIX
/TOSHIBA
/VERSATEC
/VVERSATEC

/NULL
/FILE

D-3

D-4 SUPPORTED DEVICES

Input capability: Instructions for the use of the graphics cursor, if one
is available.

File format: Description of the file in which the graphic commands are
stored. For some devices, the commands are sent directly to the device and
no intermediate file is required.

Obtaining hardcopy: When an intermediate file is used, this section
gives instructions for sending the graphic commands from the file to the
device. It is important lo check the correct procedure with your System
Manager before attempting to generate a hardcopy plot. Attempting to print
or plot a file on the wrong sort of device will at best waste a large quantity
of paper, and may damage the device or crash the VAX.

D.2 Versatec

Supported device: Versatec V-80 printer/plotter (and compatible mod-
els).

Device type code: /VErsatec (landscape mode), /VVersatec (portrait
mode).

Default file name: PGPLOT.VEPLOT (landscape mode), PGPLOT.VVPLOT
(portrait mode).

Default view surface dimensions: 10.5 inches horizontal x 8.0 inches
vertical (landscape mode), 8.0 inches horizontal x 10.5 inches vertical (por-
trait mode). These are nominal values; the actual scale may vary, particu-
larly in the dimension parallel to the paper motion.

Resolution: 200 pixels/inch (both dimensions).

Color capability: Color indices 0 (erase) and 1 (black) are supported.
Requests for other color indices are converted to 1. It is not possible to
change color representation.

Input capability: None.

File format: The file contains variable length records (up to 265 bytes),
one record corresponding to one horizontal dot row of the plot. The file has
record attributes “No Carriage Control.” The first byte in each record is
control-D (hexadecimal 04: plot mode specifier). The remaining 8-bit bytes
each represent 8 dots, with the most significant bit representing the left-most
dot; 1 implies the corresponding dot is to be filled in. Thus the maximum
number of dots per line is 264 x 8 = 2112, corresponding to 10.56 inches
at 200 dots per inch. The vertical spacing of dot rows is also 200 per inch.
Plot pages are separated by a record containing a form-feed character only (1
byte, hexadecimal 0C). These files are intended for use with a special driver

SUPPORTED DEVICES D-5

and printer symbiont which recognize the control-D and send the remainder
of the record to the Versatec in plot mode instead of text mode. This is not
the format expected by the standard VMS driver provided by Versatec.

Obtaining hardcopy: Use the VMS COPY command to send the file to a
suitable device or use the VMS PRINT command if a suitable printer queue
has been established. Examples:

$ COPY PGPLOT.VEPLOT LVAO:
$ PRINT/NOTIFY/QUEUE=VERSATEC PGPLOT.VEPLOT

On DEIMOS:

$ PRINT PGPLOT.VEPLOT
On PHOBOS:

$ VPRINT PGPLOT.VEPLOT
On Starlink:

$ PRINT/PASSALL/QUEUE=SYS_VERSATEC PGPLOT.VEPLOT

D.3 PostScript printers

Supported device: any printer that accepts the PostScript page descrip-
tion language, e.g., the LaserWriter (Apple Computer, Inc.).

Device type code: /PS (landscape mode), /VPS (portrait mode).

Default file name: PGPLOT.PSPLOT (landscape mode), PGPLOT.VPPLOT
(portrait mode).

Default view surface dimensions: 10.5 inches horizontal X 7.8 inches
vertical (landscape mode), 7.8 inches horizontal x 10.5 inches vertical (por-
trait mode).

Resolution: Commands sent to the device use coordinate increments of
0.001 inch, giving an “apparent” resolution of 1000 pixels/inch. The true
resolution is device-dependent; e.g., on an Apple LaserWriter it is 300 pix-
els/inch (in both dimensions).

Color capability: Color indices 0 (erase), 1-13 (black), 14 (light grey),
and 15 (dark grey) are supported. Requests for other color indices are
converted to 1. It is not possible to change color representation.

Input capability: None.

D-6 SUPPORTED DEVICES

File format: The file contains variable length records containing Post-
Script commands. The commands use only printable ASCII characters, and
the file can be examined or modified with a text editor.

Obtaining hardcopy: Use the VMS COPY command to send the file to a
suitable device or use the VMS PRINT command if a suitable printer queue

has been established. On DEIMOS:
$ PRINT PGPLOT.PSPLOT/QUEUE=LW

References: (1) Adobe Systems, Inc. PostScript Language Reference
Manual. Addison-Wesley, Reading, Massachusetts, 1985. (2) Adobe Sys-
tems, Inc. PostScript Language Tutorial and Cookbook. Addison-Wesley,
Reading, Massachusetts, 1985.

D.4 QMS Lasergrafix

Supported device: QMS Lasergrafix 800/1200 laser printers and other
printers accepting “QUIC” commands.

Device type code: /QMs (landscape mode), /VQms (portrait mode).

Default file name: PGPLOT.QMPLOT (landscape mode), PGPLOT.QEPLOT
(portrait mode).

Default view surface dimensions: 10.5 inches horizontal x 8.0 inches
vertical (landscape mode), 8.0 inches horizontal x 10.5 inches vertical (por-
trait mode). These are nominal values; the actual scale may vary.

Resolution: 300 pixels/inch (both dimensions). Commands sent to the
device use coordinate increments of 0.001 inch, giving an “apparent” reso-
lution of 1000 pixels/inch.

Color capability: Color indices 0 (erase) and 1 (black) are supported.
Requests for other color indices are converted to 1. It is not possible to
change color representation.

Input capability: None.

File format: The file contains variable length records containing QUIC
commands. The commands use only printable ASCII characters, and the
file can be examined or modified with a text editor.

SUPPORTED DEVICES D-7

Obtaining hardcopy: Use the VMS COPY command to send the file to a
suitable device or use the VMS PRINT command if a suitable printer queue
has been established. Examples:

$ COPY PGPLOT.QMPLOT TXAO:
$ PRINT/NOTIFY/QUEUE=LASER PGPLOT.QMPLOT

On XHMEIA:
$ LASER PGPLOT.QMPLOT
On CVAX:

$ PRINT/QUEUE=TXAO PGPLOT.QMPLOT

D.5 Printronix

Supported device: Printronix P300, P600 and equivalent dot-matrix
printer-plotters.

Device type code: /PRintronix (landscape mode only).
Default file name: PGPLOT.PRPLOT.

Default view surface dimensions: 13.2 inches horizontal x 10.0 inches
vertical, on standard 15 x 11.0-inch computer paper. These are nominal
values, but the printer is usually quite accurately aligned.

Resolution: 60 pixels/inch horizontal x 72 pixels/inch vertical.

Color capability: Color indices 0 (erase) and 1 (black) are supported.
Requests for other color indices are converted to 1. It is not possible to
change color representation.

Input capability: None.

File format: A Printronix file contains variable length records (up to 135
bytes), one record corresponding to one horizontal dot row of the plot. The
file has record attributes “No Carriage Control.” The last three bytes in each
record are control-E (hexadecimal 05: plot mode specifier), carriage-return,
line-feed. The remaining bytes each use the 6 lower-order bits to represent 6
dots, with the least significant bit representing the left-most dot; 1 implies
the corresponding dot is to be filled in. The top two bits are always 1. Thus
the maximum number of dots per line is 132 x6 = 792, corresponding to 13.2
inches at 60 dots per inch. If a plot covers more than one page, no form-feed
codes are inserted; rather a sufficient number of blank plot lines are inserted
to advance to the top of the next page (792 lines per 11-inch page). If these

D-8 SUPPORTED DEVICES

files are to be printed on a Printronix printer using the standard VAX/VMS
line-printer driver (LPDRIVER or LCDRIVER), the system manager must
set the characteristics of the printer and associated queue correctly. It is
important to ensure that (1) all 8-bit characters, including non-printable
control characters, are passed to the printer, (2) lines of 135 bytes or less
are not truncated, and (3) no extra formatting commands (e.g., form-feeds)
are sent to the printer. The following setup is used on Phobos:

$ SET PRINTER/LOWER/CR/PRINTALL LPAO:

$ SET DEVICE/SPOOLED=(SYS$PRINT,SYS2:) LPAO:

$ DEFINE/FORM/NOTRUNC/NOWRAP DEFAULT O

$ INITIALIZE/QUEUE/START/ON=LPAO: SYS$PRINT -
/DEFAULT=(FLAG=0NE) /PROT=(W:RW)/SCHED=NOSIZE

Obtaining hardcopy: On VAX/VMS machines, Printronix plot files can
be printed with a standard PRINT command, but the /PASSALL qualifier
must be included. (If the printer is setup as in the example above, /NOFEED
can be substituted for /PASSALL, but this is not recommended.) Examples:
$ PRINT/NOTIFY/PASSALL PGPLOT.PRPLOT
On Phobos:
$ PRINT/PASSALL PGPLOT.PRPLOT
On Deimos:
$ PPRINT/PASSALL PGPLOT.PRPLOT
On Starlink:
$ PRINT/PASSALL/QUEUE=SYS_PRINTRONIX PGPLOT.PRPLOT

On Ikaros (Convex-Unix):

lpr -1 PGPLOT.PRPLOT

SUPPORTED DEVICES D-9

D.6 VT125 (DEC REGIS terminals)

Supported device: Digital Equipment Corporation VT125, V1240, or
VT241 terminal; other REGIS devices may also work.

Device type code: /VT125.

Default file name (VMS): TT:PGPLOT.VTPLOT. This usually means the
terminal you are logged in to (logical name TT), but the plot can be sent
to another terminal by giving the device name, e.g., TTCO:/VT, or it can be
saved in a file by specifying a file name, e.g., CITSCR: [TJP]XPLOT/VT (in
this case a disk name must be included as part of the file name).

Default file name (Unix): /dev/tty, the terminal you are logged in to.
the plot can be sent to another terminal by giving the device name, or it
can be saved in a file by specifying a file name.

Default view surface dimensions: Depends on monitor.

Resolution: The default view surface is 768 (horizontal)x 460 (vertical)
pixels. On most Regis devices, the resolution is degraded in the vertical
direction giving only 230 distinguishable raster lines. (There are actually
240 raster lines, but 10 are reserved for a line of text.)

Color capability: Color indices 0-3 are supported. By default, color
index 0is black (the background color). Color indices 1-3 are white, red, and
green on color monitors, or white, dark grey, and light grey on monochrome
monitors. The color representation of all the color indices can be changed,
although only a finite number of different colors can be obtained (see the
manual for the terminal).

Input capability: The graphics cursor is a blinking diamond-crosshair.
The user positions the cursor using the arrow keys and PF1-PF4 keys on his
keyboard [Note: NOT the keyboard of the terminal on which he is plotting,
if that is different.] The arrow keys move the cursor in the appropriate
direction; the size of the step for each keystroke is controlled by the PF1-
PF4 keys: PF1 = 1 pixel, PF2 = 4 pixels, PF3 = 16 pixels, PF4 = 64
pixels. [The VT240 terminal has a built-in capability to position the cursor,
but PGPLOT does not use this as it is not available on the VI125.] The
user indicates that the cursor has been positioned by typing any character
other than an arrow or PF1-PF4 key [control characters, e.g., “C, and other
special characters should be avoided, as they may be intercepted by the
operating system)].

D-10 SUPPORTED DEVICES

File format: A REGIS plot file is formatted in records of 80 characters
or less, and has no carriage-control attributes. The records are grouped
into “buffers,” each of which begins with (esc)Pp to put the terminal into
graphics mode and ends with (esc)\ to put it back into text mode. The
terminal is in graphics mode only while a buffer is being transmitted, so a
user’s program can write to the terminal at any time (in text mode) without
worrying if it might be in graphics mode. Everything between the escape
sequences is REGIS: see the VT125 or VT240 manual for an explanation.
PGPLOT attempts to minimize the number of characters in the REGIS
commands, but REGIS is not a very efficient format. It does have the great
advantage, though, that it can easily be examined with an editor. The file
may also contain characters outside the (esc)Pp... (esc)\ delimiters, e.g.,
escape sequences to erase the text screen and home the cursor.

The following escape sequences are used:

(esc)[2] — Erase entire screen (text)
(esc) [H — Move cursor to home position
(esc)Pp — Enter REGIS graphics mode
(esc)\ — Leave REGIS graphics mode

PGPLOT wuses a very limited subset of the REGIS commands supported
by the VT125 and VT240. The following list summarizes the REGIS com-
mands presently used.

Initialization: the following standard commands are used to initialize the
device every time a new frame is started; most of these restore a VI'125 or
VT240 to its default state, but the screen addressing mode is nonstandard.

; — resynchronize

W(R) — replace mode writing

W(I3) — color index 1

W(F3) — both bit planes

Ww(M1) — unit multiplier

W(NO) — negative off

W(P1) — pattern 1

W(P(M2)) — pattern multiplier 2

W(S0) — shading off

S(G1) — select graphics plane [Rainbow REGIS]
S(a[0,479] [767,0]1) — screen addressing, origin at bottom left
S(10) — background dark

S(s1) —scale 1

S(MO(LO) (ALO)) — output map section 0 (black)
S(M1(L30) (AH120L50S100)) — output map section 1 (red/dim grey)
S(M2(L59) (AH240L50S100)) — output map section 2 (green/light grey)
S(M3(L100) (AL100)) — output map section 3 (white)

SUPPORTED DEVICES D-11

Drawing lines: the P and V commands are used with absolute coordinates,
relative coordinates, and pixel vectors. The (B), (S), (E), and (W) modifiers
are not used. Coordinates which do not change are omitted.

P[x,y] - move to position, e.g. P[499,0]
V[x,y] - draw vector to position, e.g. V[1[767][,479]1[0][,0]

Line attributes: the line style and line color attributes are specified with W
commands, e.g.

W(P2) — line style 2
W(I2) - intensity (color index) 2

and S commands are used to change the output map. The PGPLOT color
indices 0, 1, 2, 3 correspond to output map sections 0, 3, 1, 2.

Obtaining hardcopy: A hardcopy of the plot can be obtained using a
printer attached to the VI'125/VT240 terminal (see the instruction manual
for the terminal). A plot stored in disk file can be displayed by copying it
to a suitable terminal; e.g., use TYPE on VMS or cat on Unix.

D.7 VAX Workstations

Driver: WSDRIVER, version 4.1 (1989 Jun 7), by S. C. Allendorf.

Supported device: This driver should work with all VAX/VMS work-
stations running VWS software; it requires the UISSHR shareable image
provided by DEC.

Device type code: /WS.

Default device name: PGPLOT. Output is always directed to device
SYS$WORKSTATION; the “device name” provided by the user is used to la-
bel the PGPLOT window.

Default view surface dimensions: Depends on monitor.
Resolution: Depends on monitor.

Color capability: VAX workstations have 1, 4, or 8 bitplanes. On 1-
plane devices, there are only two colors (background = white, color index 1
= black). On 4-plane devices, color indices 0-11 are available (4 indices are
reserved for text windows and pointers). On 8-plane systems, color indices
0-249 are available (6 indices are reserved for text windows and pointers).

Input capability: The cursor is controlled by the mouse or the keypad
(arrow keys and PF1-PF4) available on the controlling (DEC-like) keyboard.
The user positions the cursor, and then types any key on the controlling
keyboard. The mouse buttons are not used.

D-12 SUPPORTED DEVICES

Notes: The displayed window is deleted when PGEND is executed or on
program exit. PGPLOT requests confirmation from the user before deleting
the window. Type a carriage-return at the prompt when you are ready to
continue. This makes it impossible to overlay a plot created by one program
on a plot created by another. (The /APPEND qualifier which allows this for
other devices has no effect on device /WS.) PGPLOT uses a window which is
nominally 11 inches wide by 8.5 inches tall, i.e., the same size as you would
get in a hardcopy. If you prefer a vertical orientation, execute the following
command before running the program:

$ DEFINE PGPLOT_WS_ASPECT PORTRAIT
Substitute LANDSCAPE for PORTRAIT to revert to horizontal orientation.

VAXstations can also be used in Tektronix emulation mode. If you run
a process in a Tektronix emulation window, you can use device specification
/TEK to tell PGPLOT to plot in Tektronix mode within the same window.
If you run in a VT220 window, you can tell PGPLOT to create a new
Tektronix window and plot in it by giving a device specification TK:/TEK.
(TK: is the VMS device name of the Tektronix emulator.) This has one
problem: the window will be deleted as soon as your program calls PGEND
or exits; you may need to add a user-prompt in your program before the

call of PGEND.

D.8 Sun Workstations

Driver: SVDRIV, by Brian M. Sutin (sutin@astro.umd.edu), 1989 May
19.

Supported device: This driver should work with all Sun workstations
running the SunView environment.

Device type code: /SUNVIEW.

Default device name: none. Output is always directed to the worksta-
tion screen.

Default view surface dimensions: Depends on monitor.
Resolution: PGPLOT uses a square window with 500 x 500 pixels.
Color capability: 32 colors, 16 pre-defined; white background.

Input capability: The cursor is controlled by the mouse. The user posi-
tions the cursor, and then types any key on the controlling keyboard. The
mouse buttons can be used instead of keystrokes.

Notes: The displayed window is deleted when PGEND is executed or on
program exit. PGPLOT requests confirmation from the user before deleting
the window.

SUPPORTED DEVICES D-13

D.9 Grinnell

Supported device: Grinnell GMR-270 Image Display System.
Device type code: /GRinnell.

Default device name: TV_DEVICE (a logical name, usually defined by
the system manager).

Default view surface dimensions: Depends on monitor.
Resolution: The full view surface is 512 x 512 pixels.

Color capability: Color indices 0-255 are supported. The default color
representation is as listed in Chapter 5. The representation of all color
indices can be changed.

Input capability: The graphics cursor is a white cross-hair. The user
positions the cursor using the arrow keys and PF1-PF4 keys on his terminal
keyboard (SYS$COMMAND). The arrow keys move the cursor in the appropriate
direction; the size of the step for each keystroke is controlled by the PF1-
PF4 keys: PF1 = 1 pixel, PF2 = 4 pixels, PF3 = 16 pixels, PF4 = 64
pixels. The user indicates that the cursor has been positioned by typing any
character other than an arrow or PF1-PF4 key [control characters, e.g., ~C,
and other special characters should be avoided, as they may be intercepted
by the operating system)].

File format: It is not possible to send Grinnell plots to a disk file.
Obtaining hardcopy: Not possible.

D.10 IVAS

Supported device: International Imaging Systems IVAS Display Proces-
sor.

Device type code: /IVAS.

Default device name: /dev/ga0 (Unix).

Default view surface dimensions: Depends on monitor.
Resolution: The full view surface is 1024 x 1024 pixels.

Color capability: Color indices 0-15 are supported. The default color
representation is as listed in Chapter 5. The representation of all color
indices can be changed.

D-14 SUPPORTED DEVICES

Input capability: The graphics cursor is a yellow cross. The user po-
sitions the cursor using the mouse, and indicates that the cursor has been
positioned by typing any character other than an arrow or PF1-PF4 key
[control characters, e.g., “C, and other special characters should be avoided,
as they may be intercepted by the operating system)].

File format: It is not possible to send IVAS plots to a disk file.
Obtaining hardcopy: Not possible.

D.11 Sigma ARGS

Supported device: Sigma ARGS color graphic display.
Device type code: /ARgs.

Default device name: ARGS_DEVICE (a logical name).
Default view surface dimensions: Depends on monitor.
Resolution: The full view surface is 512 x 512 pixels.

Color capability: Color indices 0-255 are supported. The default color
representation is as listed in Chapter 5. The representation of all color
indices can be changed.

Input capability: maybe....
File format: It is not possible to send ARGS plots to a disk file.
Obtaining hardcopy: Not possible.

D.12 Tektronix 4006, 4010

Supported device: Tektronix 4006 and 4010 Series Storage Tube termi-
nals, and “emulators.”

Device type code: /TEk4010.

Default device name: TT (a logical name, usually equivalent to the
logged-in terminal).

Default view surface dimensions: Depends on monitor.

Resolution: The full view surface is nominally 1024 (horizontal)x 768
(vertical) pixels, but the actual resolution varies from device to device.

Color capability: None. Only color index 1 is permitted, and requests
for other color indices are ignored. It is not possible to change color repre-
sentation, or to erase by using color index 0.

SUPPORTED DEVICES D-15

Input capability: Maybe....
File format: It is not possible to send Tektronix plots to a disk file.

Obtaining hardcopy: A hardcopy of the plot can be obtained using a
Tektronix hardcopy unit attached to the terminal.

D.13 Tektronix 4100

Supported device: Tektronix 4100-series terminals.
Device type code: /TK4100.

Default device name: TT (a logical name, usually equivalent to the
logged-in terminal).

Default view surface dimensions: Depends on monitor.

Resolution: The view surface is nominally 4096 (horizontal) x 3072 (ver-
tical) pixels, but the true resolution depends on which terminal is used, and
is usually much less than this.

Color capability: Color indices 0-16 are supported. The default color
representation is as listed in Chapter 5. The representation of all color
indices can be changed.

Input capability: Not yet implemented.
File format: It is not possible to send Tektronix plots to a disk file.

Obtaining hardcopy: It is possible to obtain a hardcopy of the plot (in
color, even) using a printer attached to the terminal.

D.14 Retrographics

Supported device: Digital Engineering, Inc., Retrographics modified
VT100 terminal (VT640).

Device type code: /REtro.

Default device name: TT: (the logged-in terminal).

Default view surface dimensions: Depends on monitor.
Resolution: The full view surface is 1024 (horizontal)x 780 pixels.

Color capability: Color indices 0 (erase, black) and 1 (bright: usually
green) are supported. It is not possible to change color representation.

D-16 SUPPORTED DEVICES

Input capability: The graphics cursor is a crosshair across the entire
screen. The user positions the cursor using the four arrow keys on the
keyboard of the Retrographics terminal. “By striking the desired directional
arrow key, the crosshair will move across the display screen at the rate of
one dot per keystroke. Applying a constant pressure on an arrow key will
cause the crosshair to move at a continuous rapid rate; releasing the key will
stop the crosshair’s movement.” The user indicates that the cursor has been
positioned by typing any printable ASCII character on the keyboard of the
Retrographics terminal. Most control characters (e.g., “C) are intercepted
by the operating system and cannot be used.

File format: It is not possible to send Retro plots to a disk file.
Obtaining hardcopy: Not possible.

D.15 Null Device

Supported device: The “null” device can be used to suppress all graphic
output from a program.

Device type code: /Null.

Default device name: None (the device name, if specified, is ignored).
Default view surface dimensions: Undefined.

Resolution: Undefined.

Color capability: Color indices 0-255 are accepted.

Input capability: None.

File format: None.

Obtaining hardcopy: Not possible.

D.16 Canon

Supported device: Canon LBP-8/A2 Laser printer. Conforms to ISO
646, 2022, 2375 and 6429 specifications. VDM (graphics) conforms to pro-
posed American National Standard VDM mode.

Device type code: /CAnon (landscape mode), /VCanon (portrait mode)
and /BCanon (bitmap in landscape mode only).

Default file name: PGPLOT.CAN

Default view surface dimensions: 24 cm by 19 cm.

SUPPORTED DEVICES D-17

Resolution: 300 pixels per inch in both directions.

Color capability: Color indices 0 (erase) and 1 (black) are supported.
Note, hardware polygon fill is used and colors 0-11 control the fill pattern.

Input capability: None.
File format: Variable length records with Carriage control of LIST.

Obtaining hardcopy: If printer is connected to a terminal line (RS-232
option) then printing the file on the corresponding queue should suffice.
If the printer is connected using the Centronics interface that appears the
to VAX as an LP device then it is important to ensure that (1) all 8 bit
characters are passed to the printer (2) lines longer than 132 bytes are not
truncated, and (3) no extra formatting commands (e.g. form-feeds) are sent
to the printer. This can be done with the VMS command:

$ SET PRINT/PASSALL/LOWER/CR <device>

Note, some interface boards have a option to append a carriage return after
a formfeed or LF character, it is necessary that this be disabled. The file

should be printed with the /PASSALL qualifier i.e.,
$ PRINT/PASSALL <filename>

Note, SET PRINT/PASSALL and PRINT/PASSALL do not do the same
things and hence PASSALL is required in both locations.

Note: The BCDRIVER produces a bitmap that then can be printed on
the Canon. The default size is 1556 blocks and takes 5 min (parallel) or 15
min (serial 9600 baud) to print. Thus for simple line graphs CADRIVER
produces much smaller files (typically <100 blocks) that that plot in <30 sec.

However, for complex graphs, for example those obtained with PGGRAY,
BCDRIVER will produce the smaller file and plot faster. Therefore, it is
suggested that sites with Canon laser printers should support both drivers.

D.17 Colorwriter 6320 Plotter

Supported device: Gould (now Bryans) Colourwriter 6320 or any device
obeying Gould Plotter Language.

Device type code: /CW6320
Default device name: $PLOTTER1 (Defined system logical name)
Default view surface dimensions: 280mm by 360mm (A3)

Resolution: 0.025mm

D-18 SUPPORTED DEVICES

Colour Capability: Up to 10 pens.Default is pen 1 which is picked up
on initialization without a call to PGSCI.Calls to PGSCI are interpreted as
the pen number and colours therefore depend on how the pens have been
loaded into the stalls.If a call is made for a pen higher than 10 the selected
pen defaults to 1.

Input Capability: Possible but not supported.

File format: Ascii character strings.It is possible to send the data to a
file which can then be copied to the plotter or examined on a terminal.

Obtaining hard copy: PGPLOT has been fixed to send the plot directly
to the plotter without an intermediate file.

D.18 Ikon

Supported device: Digisolve Ikon Pixel Engine

Device type code: /IKon.

Default device name: IKON_DEFAULT (a logical name).
Default view surface dimensions: Depends on monitor.
Resolution: The full view surface is 1024 by 780 pixels.

Color capability: Color indices 0-255 are supported. The default repre-
sentation is listed in Chapter 5 of the PGPLOT manual. The representation
of all color indices can be changed.

Input capability:
File format: It is not possible to send IKON plots to a disk file.
Obtaining hardcopy: Not possible.

D.19 Zeta

Supported device: Zeta 8 Digital Plotter.
Device type code: /ZEta
Default file name: PGPLOT.ZET

Default view surface dimensions: 11 inches by 11 inches. Current
version does not allow larger plots although the manual indicates plots up
to 144 feet are possible.

SUPPORTED DEVICES D-19

Resolution: This version is written for the case where the resolution
switch is set to .025 mm. Actual resolution depends on thickness of pen tip.

Color capability: Color indices 1 to 8 are supported corresponding to
pens 1-8. It is not possible to erase lines.

Input capability: None.
File format: Variable length records with Carriage control of LIST.

Obtaining hardcopy: On Starlink print the file on the queue associated
with the Zeta plotter. If the Plotter is attached to a terminal line, then
TYPEing the file at the terminal will produce a plot. On Starlink:

$ PRINT/NOFEED/QUE=ZETA PGPLOT.ZET

To stop a Zeta plot job, once it has been started, use the buttons on the
plotter. Press PAUSE, NEXT PLOT and CLEAR. Only after this sequence
is it safe to delete the job from the ZETA Queue. Failing to press the
NEXT PLOT button will not correctly advance the paper. Failing to press
CLEAR but, deleting the current job can prevent the following plot from
being plotted.

Appendix E

WRITING A DEVICE HANDLER

E.1 Introduction

PGPLOT can be configured for a particular installation by adding or re-
moving “device handlers”. A device handler is a subroutine which handles
all the device-specific aspects of graphical output for a particular device or
class of devices.

All graphical output is handled by a “device dispatch routine” in PG-
PLOT, called GREXEC. This routine calls on the appropriate device han-
dler to perform the output. Reconfiguring PGPLOT involves modifying the
GREXEC routine to use a different set of device handlers; no other changes
to PGPLOT are needed.*

To write a new device handler, it is simplest to start by modifying an
existing one. This Appendix explains what the device handler must do,
but it does not explain how to do it—which is, of course, very hardware-
dependent.

The supported device types fall into three classes, and when adding a
new device you should determine which class it belongs to, and then add
the new device by copying and modifying the support routines for one of
the existing devices in this class. The three classes are:

1. Bit map devices (e.g., Versatec). The complete image is assembled in
memory as a bit map and then written in an output file in a format
acceptable to the device. The existing devices in this class use one bit
per pixel, but more bits could be allocated.

2. Instruction stream devices (e.g., QMS): Graphical instructions are writ-
ten sequentially in the output file using Fortran I/O. Usually the in-
structions are composed of printable ASCII characters, but this is not
essential.

* In the VMS version of PGPLOT, the modification of GREXEC can be
done automatically using the command procedure NEWEXEC.COM which finds
all the device handlers currently installed in the [PGPLOT.SOQURCE] directory.

E-2 WRITING A DEVICE HANDLER

3. Direct I/O devices (e.g., Grinnell): devices that require special com-
mands that cannot be encoded in text strings use the low-level oper-
ating system I/O routines (SYS$QIO in VMS) to directly control the
device. It is not possible to store images in a disk file for these devices.

E.2 Device handler interface

A device handler is a Fortran subroutine. It is called by the GREXEC de-
vice dispatch routine whenever PGPLOT needs to determine device-specific
information or perform graphical output. The name of the subroutine must
be of the form zzDRIV, where zz is a two-character code for the device
type, usually the first two letters of the type; this code must (of course) be
different for each different device handler.

SUBROUTINE xxDRIV (OPCODE, RBUF, NBUF, CHR, LCHR)
INTEGER OPCODE

REAL RBUF (*)
INTEGER NBUF
CHARACTER* (%) CHR
INTEGER LCHR

The first argument (OPCODE) is an integer “operation code” which speci-
fies what operation the device handler is to perform; it is an input parameter
to the subroutine (see Table E.1). The other arguments are used for both
input and output, and their meaning depends on the value of the operation
code. Not all arguments are used for every operation code. RBUF is a
floating-point array used to pass numerical data to or from the device han-
dler, and NBUF indicates how many elements of the array are used. CHR is
a character variable used to pass character data to or from the device han-
dler, and LCHR indicates how many characters are used. NBUF or LCHR
should be set to zero if no data of the corresponding type are passed. If the
function requested by the operation code (OPCODE) is not implemented in
the device handler, the subroutine should set NBUF = —1 before returning.

The device handler subroutine can communicate with PGPLOT only
through the arguments. It should not attempt to reference the PGPLOT
common blocks (this is because the internal structure of the PGPLOT com-
mon blocks may change).

WRITING A DEVICE HANDLER E-3

Table E.1 Device Handler Operation Codes

Opcode Function
1 Return device name
2 Return maximum dimensions of view surface,
and range of color index
3 Return device scale
4 Return device capabilities
5 Return default device/file name
6 Return default size of view surface
7 Return miscellaneous defaults
8 Select device
9 Open workstation
10 Close workstation
11 Begin picture
12 Draw line
13 Draw dot
14 End picture
15 Set color index
16 Flush buffer
17 Read cursor
18 Frase alpha screen
19 Set line style
20 Polygon fill
21 Set color representation
22 Set line width
23 Escape function
24 Rectangle fill
25 Set fill pattern
26 Line of pixels

E.3 Handler state

PGPLOT will send commands to the device handler in a set sequence. In-
quiry commands (opcodes 1-7) may be sent at any time, whether or not a
device has been selected for output. The open workstation and close work-
station commands are used to open and close a device. The begin picture
and end picture commands are used to start and finish a “frame” (one page
on a hardcopy device). Graphical output commands (opcodes 12-13, 16-23)
are only used between begin picture and end picture. Thus the sequence of

E-4 WRITING A DEVICE HANDLER

commands for a plot consisting of two frames will be:

open workstation
begin picture
(graphical output commands)
end picture
begin picture
(graphical output commands)
end picture
close workstation

Any violation of this sequence is due to a bug in PGPLOT.

E.4 Summary of operations

OPCODE = 1, Return device name. This is an inquiry function;
the handler returns the name by which the the user will refer to the device
type, e.g., ‘PRINTRONIX’ for a Printronix device handler. This name
must be different for each device handler installed in PGPLOT, and should
preferably be unique in the first two or three characters.

CHR(:LCHR) (returned): the device type supported by the handler.

OPCODE = 2, Return maximum dimensions of view surface, and
range of color index. This is an inquiry function; the handler returns
the maximum dimensions of the plot surface, and the range of color in-
dices available. On interactive devices, these will usually be the same as
the default dimensions. On hardcopy devices which plot on roll or fanfold
paper, the maximum dimensions may be larger. All dimensions are in de-
vice coordinates. All devices should support color indices 0 and 1; color
and gray-scale devices will allow color indices > 1 up to a device-dependent
maximum value (which should not exceed 255). Color index 0 is the back-
ground color and is used to erase; if it is not possible to erase by overwriting
in the background color, then requests to write in color index 0 should be
ignored.

RBUF(1) (returned): Minimum physical z value (set to zero).

RBUF(2) (returned): Maximum physical z value (a value of —1 indi-
cates no effective maximum).

RBUF(3) (returned): Minimum physical y value (set to zero).

RBUF(4) (returned): Maximum physical y value (a value of —1 indi-
cates no effective maximum).

RBUF(5) (returned): Minimum allowed color index (usually 0).
RBUF(6) (returned): Maximum allowed color index (in range 1-255).

WRITING A DEVICE HANDLER E-5

OPCODE = 3, Return device scale. This is an inquiry function; the
handler returns the device scale in device coordinate units per inch. Usually,
the units of the device coordinates are pixels, so this also gives the physical
resolution in pixels per inch. For hardcopy devices, the values should be
as accurate as possible, to ensure that an image has the correct scale. For
video display terminals and other devices where the scale is variable, nominal
values should be returned.

RBUF(1) (returned): z scale in device coordinates per inch.
RBUF(2) (returned): y scale in device coordinates per inch.

RBUF(3) (returned): “pen diameter” in device coordinates (i.e., the
width of a hardware line); this value is used by PGPLOT when emulating
thick lines and polygon fill.

OPCODE = 4, Return device capabilities. This is an inquiry func-
tion which is used to inform PGPLOT of the device’s capabilities. If the
device lacks a capability in hardware, PGPLOT will try to emulate it.

CHR(1:10) (returned): each character in this string defines whether a
capability exists:

CHR(1:1) = ‘H’if the device is a hardcopy device, ‘I" if it is an interactive
device. On an interactive device, the image is visible as it is being drawn,
while on a hardcopy device it cannot be viewed until the workstation is
closed.

CHR(2:2) = ‘C’ if a cursor is available, ‘N’ if not. PGPLOT cannot
emulate a cursor if none is available.

CHR(3:3) = ‘D’ if the hardware can draw dashed lines, ‘N’ if it cannot.
PGPLOT emulates dashed lines by drawing line segments. Software emula-
tion is usually superior to hardware dashed lines, and not much slower, so
CHR(3:3) = ‘N’ is recommended.

CHR(4:4) = ‘A’ if the hardware can fill arbitrary polygons with solid
color, ‘N’ if it cannot. PGPLOT emulates polygon fill by drawing horizontal
or vertical lines spaced by the pen diameter (see OPCODE = 3).

CHR(5:5) = “I" if the hardware can draw lines of variable width, ‘N’ if
it cannot. PGPLOT emulates thick lines by drawing multiple strokes spaced
by the pen diameter. Note that thick lines are supposed to have rounded
ends, as if they had been drawn by a circular nib of the specified diameter.

CHR(6:6) = ‘R’ if the hardware can fill rectangles with solid color, ‘N if
it cannot. If this feature is not available, PGPLOT will treat the rectangle
as an arbitrary polygon. In this context, a ‘rectangle’ is assumed to have its
edges parallel to the device-coordinate axes.

CHR(7:7) = ‘P’ if the driver understands the pixel primitives (opcode
26), ‘N’ otherwise.

E-6 WRITING A DEVICE HANDLER

CHR(8:10) : reserved for future use; the device handler should return
‘N’ in all these positions.

OPCODE = 5, Return default device/file name. This is an inquiry
routine. The device handler returns the device or file name to be used if the
PGPLOT device specification does not include one. (On VMS, the default
file name is also used to fill in missing fields of the supplied file name, e.g.,
disk, directory, and file type.)

CHR(:LCHR) (returned): default device/file name.

OPCODE = 6, Return default size of view surface. This is an
inquiry function; the handler returns the default dimensions of the plot
surface in device coordinates. At present, PGPLOT assumes that the device
coordinates of the bottom left corner are (0,0).

RBUF(1) (returned): default z-coordinate of bottom left corner (must
be zero).

RBUF(2) (returned): default z-coordinate of top right corner.

RBUF(3) (returned): default y-coordinate of bottom left corner (must
be zero).

RBUF(4) (returned): default y-coordinate of top right corner.

OPCODE = 7, Return miscellaneous defaults. This is an inquiry
routine. The handler returns a scale-factor to be used for the “obsolete
character set” used by old GRPCKG routines but not by PGPLOT.

RBUF(1) (returned): character scale factor (integer, > 1).

OPCODE = 8, Select device. This opcode is reserved for future use.
At present, each device handler can handle only one open device at once.
Future versions of PGPLOT will allow more than one device to be open at
once, and this opcode will be used to select the active device.

RBUF(1) (input): plot ID.
RBUF(2) (input): unit or channel number of selected device (as re-
turned by open workstation.

WRITING A DEVICE HANDLER E-7

OPCODE = 9, Open workstation. Allocate an I/O channel to the
requested device and open the device. Any hardware resets that need to be
done once for a plot session (which could consist of several frames) should
be done here. Allocate buffer, if its size is fixed for the device. No visible
I/0O should be performed on an interactive device: e.g., the screen should
not be cleared; this should be deferred until the begin picture call.

RBUF(1) (returned): identification number of the I/O channel opened;
PGPLOT will use this number in subsequent select device calls for this
device (see OPCODE = 8).

RBUF(2) (returned): error flag; 1.0 indicates that the workstation was
opened successfully; any other number indicates an error.

RBUF(3) (input): if # 0, the device specification included the /AP-
PEND flag. If this flag is specified, the device handler should suppress any
initial screen erase so that the new image is superimposed on any previously
displayed image. The device handler may ignore this if it is inappropriate
(e.g., for a hardcopy device).

CHR(:LCHR) (input): the file/device to be opened. On VMS, this will

be a physical device name, an RMS file name, or a logical name.

OPCODE = 10, Close workstation. Close the device opened by the
open workstation command, and deallocate any resources allocated for the
device (e.g., memory, /O channels).

OPCODE = 11, Begin picture. Prepare the workstation for plotting.
This command has two arguments which specify a size for the view surface
overriding the default size; if the device handler is unable to change the size
of the view surface, it may ignore these arguments. On interactive devices,
erase the screen.

RBUF(1) (input): maximum z coordinate.

RBUF(2) (input): maximum y coordinate.

OPCODE = 12, Draw line. Draw a straight line from device coordi-
nates (z1,¥1) to (z2,y2) using the current line attributes (color index, line
style, and line width). The coordinates are floating point, and may need to
be rounded to the nearest integer before they are passed to the hardware.

RBUF(1) (input): zy.

RBUF(2) (input): y;.
RBUF(3) (input): z,.
RBUF(4) (input): ya.

E-8 WRITING A DEVICE HANDLER

OPCODE = 13, Draw dot. Draw a dot at device coordinates (z,y)
using the current line attributes (color index and line width). The result
should be an approximation to a filled circle of diameter equal to the line
width, or a dot of minimum size if line width is 0. The coordinates are
floating point, and may need to be rounded to the nearest integer before
they are passed to the hardware.

RBUF(1) (input): z.
RBUF(2) (input): y.

OPCODE = 14, End picture. Terminate the current frame. On
hardcopy devices always advance the paper. On interactive devices, clear
the screen only if requested. Deallocate buffers that were created by begin

picture (OPCODE = 11).
RBUF(1) (input): if # 0, clear screen.

OPCODE = 15, Set color index. Set the color index for subsequent
plotting. The default color index is 1.

RBUF(1) (input): color index; in range defined by OPCODE = 2.

OPCODE = 16, Flush buffer. If the handler is buffering output to
an interactive device, it should flush its buffers to ensure that the displayed
image is up to date. Hardcopy devices can ignore this opcode.

OPCODE = 17, Read cursor. This function is not used if OPCODE
= 4 indicates that the device has no cursor. The handler should make the
cursor visible at position (z,y), allow the user to move the cursor, and wait
for a key stroke. It should then return the new cursor (z,y) position and
the character (key stroke) typed. (If it is not possible to make the cursor
visible at a particular position, the handler may ignore the requested (z,y)
coordinates.)

RBUF(1) (input/returned): x position of cursor.
RBUF(2) (input/returned): y position of cursor.
CHR(:1) (returned): character typed by user.

OPCODE = 18, Erase alpha screen. If graphics device is a terminal
that can display both graphics and text on the same screen, clear the text
screen, leaving graphics unchanged. All other devices should ignore this
opcode.

OPCODE = 19, Set line style. This opcode is not used if OPCODE
= 4 indicates that the device does not support hardware dashing; PGPLOT
will use software-generated dashed lines.

RBUF(1) (input): requested line style (integer 1-5).

WRITING A DEVICE HANDLER E-9

OPCODE = 20, Polygon fill. This function is not used if OPCODE
= 4 indicates that the device does not support hardware polygon fill. The
polygon may be arbitrarily complex (concave or re-entrant); if the hardware
cannot cope with this, the handler should set the OPCODE = 4 response to
disable hardware fill. If hardware fill is enabled, the handler should respond

to this function by filling the polygon with the current color index. To draw
an N-sided polygon, PGPLOT uses this opcode N + 1 times.

First call:

RBUF(1) (input): number of points N in polygon.

For next N calls:

RBUF(1) (input): z value.

RBUF(2) (input): y value.

OPCODE = 21, Set color representation. Assign the specified
(R,G, B) color, or the best available approximation, to the specified color
index. If colors cannot be changed dynamically, ignore the request.

RBUF(1) (input): color index (integer, in range defined by OPCODE
= 2).

RBUF(2) (input): red component (0.0-1.0).

RBUF(3) (input): green component (0.0-1.0).

RBUF(4) (input): blue component (0.0-1.0).

OPCODE = 22, Set line width. This function is not used if OP-
CODE = 4 indicates that the device does not support hardware thick lines.
Subsequent lines and dots should be drawn with the requested width, or the
closest available approximation. The units of line-width are 0.005 inches. A
requested line-width of zero should give the narrowest line available on the
device (“hair line”).

RBUF(1) (input): requested line width, in units of 0.005 inch.

OPCODE = 23, Escape function. This function allows an arbitrary
character string to be sent to the device handler. The interpretation is up to
the handler; usually, the string will be sent directly to the device or ignored.
Use of this function should be avoided.

CHR(:LCHR) (input): character string.

OPCODE = 24, Rectangle fill. This function is not used if OPCODE
= 4 indicates that the device does not support hardware rectangle fill.

RBUF(1), RBUF(2) (input): z,y coordinates of lower left corner of
rectangle.

RBUF(3), RBUF(4) (input): z,y coordinates of upper right corner of
rectangle.

E-10 WRITING A DEVICE HANDLER

OPCODE = 25, Set fill pattern. This function is not yet imple-
mented.

OPCODE = 26, Line of pixels. This function is not used if OPCODE
= 4 indicates that the device does not support this function. It is used to
write a horizontal line of pixels on the device screen with specified color
indices; it should be more efficient to do this with one device driver call
rather than separate calls for each pixel. This operation is used for gray-scale
and color imaging (e.g., routine PGGRAY). If the device handler implements
this operation, it is important that the device coordinates should be true
pixel numbers.

RBUF(1), RBUF(2) (input): z,y coordinates of the first pixel to be
written. These should be integer pixel numbers in the device coordinate
system (passed as REAL numbers).

RBUF(3)...RBUF(NBUF) (input): color indices for n pixels to be filled
in, starting at (z,y) and ending at (z4+n—1,y). The values should be valid
integer color indices for the device (passed as REAL numbers). The number
of pixels is specified by the argument NBUF: n = NBUF — 2.

E.5 Testing a new device handler

Several of the example programs can be used to test that PGPLOT has been
installed correctly, or that a new device handler is working. For a complete
test, I recommend running the following programs on each installed device

type.

PGEX17 This tests most of the features of PGPLOT and will reveal
most device-handler errors.

1. It draws a rectangle enclosing the entire view surface. All four sides
of this rectangle should be visible. It then draws the bisectors of the
sides, which intersect in the center of the rectangle, and a concentric
circle. The circle should always be circular, not elliptical, independent
of the aspect ratio of the view surface. The dimensions of the rectangle
and circle are typed on the terminal before the program exits; these di-
mensions should be checked against the actual dimensions for hardcopy
devices (for TV-type devices the exact dimensions are not important).

2. It draws 5 vertical lines of width 1 in the five different line-styles.
3. It draws 5 horizontal lines of width 1 through 5.

4. It draws 21 dots, using pen-widths 1 through 21. Check particularly
that the first (lowest) dot, of diameter 1, is visible.

WRITING A DEVICE HANDLER E-11

5. It draws 16 vertical lines using color indices 0-15. The first line, in
color index zero, overwrites the vertical bisector of the rectangle. If
erase-mode is implemented, this will erase the line drawn in step 1.

6. It outlines and fills four polygons (ducks) in color indices 0-3. The inte-
rior of the first polygon should be erased if erase-mode is implemented.

7. Finally it erases (or attempts to erase) a rectangle at the top of the
image, and writes the version number of PGPLOT and the name of the
device type within the rectangle. If this text does not appear, probably
the environment variable PGPLOT_FONT is not defined correctly.

PGDEMO1 This draws several simple graphs using the basic PGPLOT
routines. The main feature that this program tests that is not tested by
PGEX17 is the ability to clear the screen or start a new page. On interactive
devices, the program should prompt for a carriage-return before starting the
second and subsequent graphs. A large number of the PGPLOT routines
are tested by this program.

PGDEMO2 The first image produced by PGDEMO2 is mostly useful
for testing TV-type displays which support many color-indices. It draws
an alignment grid in two shades of gray, and patches of color using indexes
0-15. Subsequent images demonstrate the graph markers and text fonts.

PGEX15 PGEXI15 can be use to test the cursor (routine PGCURSE). It
draws a frame around the view surface and allows the user to position the
cursor. The keystroke code typed by the user and the cursor position are
displayed on the terminal. To exit from the program, type a slash (/).

Appendix F

CALLING PGPLOT FROM A C PROGRAM

F.1 Introduction

It is possible to call PGPLOT routines from a program written in C. The
methods for calling a Fortran subroutine from a C program are operating-
system dependent, and indeed it is impossible in some systems. The details
are rather complicated, and if there is a demand, we could create a C-
callable library that hides these details from the user. Examples of the
same program written in Fortran-77, VAX/VMS C, and Convex UNIX C
are included below.

F.2 VMS

The following is a prescription for calling PGPLOT subroutines from a C
program on a VAX running VMS.

1. All arguments (except arrays and character strings) are passed by ad-
dress using the & operator. As you cannot take the address of a constant,
constants must be passed in dummy variables.

2. INTEGER arguments correspond to C type long int or int.
3. REAL arguments correspond to C type float.

4. CHARACTER arguments correspond to C character strings, but they must
be passed by descriptor. The VAX-C manual explains how to do this
using the $DESCRIPTOR macro for fixed strings; it is a little more com-
plicated for variable strings.

5. Note that the backslash character (\) must be escaped (\\).

F-2 CALLING PGPLOT FROM A C PROGRAM

F.3 Convex UNIX

The following is a prescription for calling PGPLOT subroutines from a C
program on the Convex. It may also work on other Berkeley UNIX systems.

1. The main program must be called MAIN__() instead of main(). I don’t
know why this is so, but it must have to do with the initialization of
the Fortran library.

2. Use the C compiler to compile the program, but use fc to load it. This
ensures that the Fortran system libraries are scanned.

3. All PGPLOT subroutine names must be typed in lower case, with an
underscore appended, e.g., pgbegin_(), pgend_().

4. All arguments (except arrays and character strings) are passed by ad-
dress using the & operator. As you cannot take the address of a constant,
constants must be passed in dummy variables.

5. INTEGER arguments correspond to C type long int.

6. REAL arguments correspond to C type float.

7. For CHARACTER arguments, pass a pointer to a C character string, and

add the length of the string (number of characters) as an extra long
int argument at the end of the argument list.

8. Note that the backslash character (\) must be escaped (\\).

Example:

cc -c examplel.c
fc -o examplel examplel.o -lpgplot
examplel

Qaoaaa Qaaa

QaaaaQ

Q

CALLING PGPLOT FROM A C PROGRAM

PROGRAM PGDEMO

INTEGER I
REAL XS(5),YS(5), XR(100), YR(100)
DATA XS/1.,2.,3.,4.,5./

DATA YS/1.,4.,9.,16.,25./

Call PGBEGIN to initiate PGPLOT and open the output device; PGBEGIN
will prompt the user to supply the device name and type.

CALL PGBEGIN(0,’?’,1,1)

Call PGENV to specify the range of the axes and to draw a box, and
PGLABEL to label it. The x-axis runs from O to 10, and y from O to 20.

CALL PGENV(0.,10.,0.,20.,0,1)
CALL PGLABEL(’(x)’, ’(y)’, ’PGPLOT Example 1 - y = x\u2’)

Mark five points (coordinates in arrays XS and YS), using symbol
number 9.

CALL PGPOINT(5,XS,YS,9)
Compute the function at 60 points, and use PGLINE to draw it.
DO 10 I=1,60
XR(I) = 0.1%I
YR(I) = XR(I)**2
10 CONTINUE
CALL PGLINE(60,XR,YR)
Finally, call PGEND to terminate things properly.
CALL PGEND

END

F-3

F-4 CALLING PGPLOT FROM A C PROGRAM

JF m
* Demonstration program for PGPLOT called from C [VMS].
e e
*/
#include descrip
main()
{
int i;
static float xs[] = {1.0, 2.0, 3.0, 4.0, 5.0 };
static float ys[] = {1.0, 4.0, 9.0, 16.0, 25.0 };
float xr[100], yr[100];
long dummy, nx, ny;
float xmin, xmax, ymin, ymax;
long just, axis, n, symbol;
$DESCRIPTOR(device, "7");
$DESCRIPTOR(xlabel, "(x)");
$DESCRIPTOR(ylabel, "(y)");
$DESCRIPTOR(toplabel, "PGPLOT Example 1 - y = x\\u2");
/*

* Call PGBEGIN to initiate PGPLOT and open the output device; PGBEGIN
* will prompt the user to supply the device name and type.

*/
dummy = O;
nx = 1;
ny = 1;

pgbegin(&dummy, &device, &nx, &ny);
/*
* Call PGENV to specify the range of the axes and to draw a box, and
* PGLABEL to label it. The x-axis runs from O to 10, and y from O to 20.
*/
xmin = 0.0;
xmax = 10.0;

ymin = 0.0;
ymax = 20.0;
just = 0;
axis = 1;

pgenv(&xmin, &xmax, &ymin, &ymax, &just, &axis);
pglabel(&xlabel, &ylabel, &toplabel);
/*
* Mark five points (coordinates in arrays XS and YS), using symbol
* number 9.

*/
n = 5;
symbol = 9;
pgpoint (&n, xs, ys, &symbol);
/*
* Compute the function at 60 points, and use PGLINE to draw it.
*/
n = 60;
for (i=0; i<n; i++)
{
xr[i] = 0.1%i;
yr[i]l = xr[il#*xr[i];
}
pgline(&n, xr, yr);
/*
* Finally, call PGEND to terminate things properly.
*/

pgend();

CALLING PGPLOT FROM A C PROGRAM

JF m
* Demonstration program for PGPLOT called from C [Convex UNIX].

*/
MAIN__Q)
{
int i;
static float xs[] = {1.0, 2.0, 3.0, 4.0, 5.0 };
static float ys[] = {1.0, 4.0, 9.0, 16.0, 25.0 };

float xr[100], yr[100];
long dummy, nx, ny, just, axis, n, symbol;
float xmin, xmax, ymin, ymax;
/*
* Call PGBEGIN to initiate PGPLOT and open the output device; PGBEGIN
* will prompt the user to supply the device name and type.
*/

dummy = O;
nx = 1;
ny = 1;

pgbegin_(&dummy, "7?", &nx, &ny, 1L);
/*
* Call PGENV to specify the range of the axes and to draw a box, and

* PGLABEL to label it. The x-axis runs from O to 10, and y from O to 20.

*/
xmin = 0.0;
xmax = 10.0;

ymin = 0.0;
ymax = 20.0;
just = 0;
axis = 1;

pgenv_(&xmin, &xmax, &ymin, &ymax, &just, &axis);

pglabel_("(x)", "(y)", "PGPLOT Example 1 - y = x\\u2", 3L, 3L, 27L);
/*
* Mark five points (coordinates in arrays XS and YS), using symbol
* number 9.

*/
n = 5;
symbol = 9;
pgpoint_(&n, xs, ys, &symbol);
/*
* Compute the function at 60 points, and use PGLINE to draw it.
*/
n = 60;
for (i=0; i<n; i++)
{
xr[i] = 0.1%i;
yr[i]l = xr[il#*xr[i];
}
pgline_(&n, xr, yr);
/*
* Finally, call PGEND to terminate things properly.
*/

pgend_Q) ;

F-6 CALLING PGPLOT FROM A C PROGRAM

